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Abstract
The sudden introduction of a local impurity in a Fermi sea leads to an anomalous disturbance of its quantum state that represents a

local quench, leaving the system out of equilibrium and giving rise to the Anderson orthogonality catastrophe. The statistics of the

work done describe the energy fluctuations produced by the quench, providing an accurate and detailed insight into the funda-

mental physics of the process. We present here a numerical approach to the non-equilibrium work distribution, supported by appli-

cations to phenomena occurring at very diverse energy ranges. One of them is the valence electron shake-up induced by photo-

ionization of a core state in a fullerene molecule. The other is the response of an ultra-cold gas of trapped fermions to an embedded

two-level atom excited by a fast pulse. Working at low thermal energies, we detect the primary role played by many-particle states

of the perturbed system with one or two excited fermions. We validate our approach through the comparison with some photoemis-

sion data on fullerene films and previous analytical calculations on harmonically trapped Fermi gases.
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Introduction
Closed many-particle systems and their out-of-equilibrium

dynamics after a quench have been attracting considerable

interest over the past years, with particular attention to the

brutal disturbance of the equilibrium properties of a Fermi gas,

induced by the sudden introduction of localized scattering

potential in the system [1-4]. Notwithstanding the weakness of

the perturbation, its effect can be so pronounced that the final

state of the gas loses essentially any overlap with the initial

unperturbed one, as the number of particles approaches the ther-

modynamic limit. This orthogonality catastrophe predicted by
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Anderson [5] was first witnessed by the anomalous response of

conduction electrons to core level ionization through X-ray

absorption, and the subsequent emission of a core electron from

simple metals [6,7]. The corresponding kinetic energy spec-

trum was observed to have an asymmetric peak at the binding

energy of the core level with a power-law singularity, which has

then become known as the Fermi edge singularity [7]. Similar

patterns were afterwards identified in a large number of core-

ionized systems [8,9], including organic molecules [10] and

carbon-based nanomaterials [11-19], where an additional signa-

ture of the Anderson orthogonality catastrophe are the second-

ary peaks, or shake-up satellites, in the core level spectra.

Despite the diversity of contexts in which Fermi edge reso-

nance and Anderson orthogonality catastrophe occur [20-30],

the same generic physics has been recently observed in the

controllable domain of ultra-cold trapped gases, as a response to

the embedding of a single probe qubit, i.e., a two-level impu-

rity [31,32]. Furthermore the intrinsic out-of-equilibrium

dynamics induced by the impurity has been thoroughly

analyzed by treating the quench as a thermodynamic transfor-

mation [33], and using the full statistics of the work done on the

gas [34,35]. Interestingly enough, X-ray absorption and emis-

sion spectra from noninteracting quantum dots have been inter-

preted in terms of the quantum work distribution, and linked to

the corresponding fluctuation relations in statistical mechanics

[36]. To explore more of such a connection, we present here a

comparison of the statistics of the work done in the C60 mole-

cule, following the core ionization of a carbon atom, and a

harmonically trapped Fermi gas, following the sudden switch

on of a localized perturbation, assumed to have an s-wave-like

character. In particular, we propose a numerical approach suit-

able for low-temperature regimes to compute the work distribu-

tion (Section 1), based on the knowledge of the initial ground

state and the low-lying final perturbed states of the systems

(Section 2). To treat the fullerene molecule, we use density-

functional theory (DFT) and simulate the sudden creation of a

core state, by replacing a 1s electron pair with the effective

pseudo-potentials of neutral and ionized atomic carbon (Section

2.1). In the harmonically trapped Fermi gas, on the other hand,

we assume a contact scattering potential with a spatially struc-

ture-less form, localized at the center of the harmonic trap, and

express the potential strength in terms of a dimensionless para-

meter, which turns out to be the critical parameter governing the

sudden quench process (Section 2.2). We then determine the

one-fermion structures of the systems in the absence or pres-

ence of the perturbation, and compute the many-body overlap

between the initial unperturbed ground state and the final

perturbed states, with not more than two excited fermions

(Section 3). The work distribution obtained with such contribu-

tions accounts for more than 95% of the shake-up process,

which let us select the suitable parameters in the Fermi gas with

a shake-up content similar to that of fullerene. We test the accu-

racy of the methods through the comparison with available

X-ray photoemission experiments [12,13], in the fullerene case,

and previous analytical calculations [32,35], in the Fermi gas

case. Finally, we draw some conclusions on the results obtained

in the two applications (Section Conclusion).

Results and Discussion
1 Work distribution and energy spectrum in a
sudden quench
We begin by reviewing some concepts regarding non-equilib-

rium thermodynamics in a suddenly quenched Fermi gas.

Consider a many-fermion system in a well-defined Gibbs state

at inverse temperature β and chemical potential μ. The equilib-

rium is set by the initial Hamiltonian  and the number oper-

ator , which are diagonal in the same basis of eigenstates

 having the eigenvalues Ei and Ni, respectively. After

removing the contact with the thermal reservoir, suppose some

work is performed by taking the system out of equilibrium

through the abrupt introduction of an external perturbation .

Now the perturbed system is characterized by the final Hamil-

tonian , specified by the eigenstates  and the

eigenenergies . In this picture, the work done is not a

quantum mechanical observable, but rather a stochastic vari-

able distributed according to a probability distribution Pβ(W)

[34]. The definition of such a distribution requires two projec-

tive measurements: the first projects onto the eigenbasis of the

initial Hamiltonian, with the system in thermal equilibrium. The

system then suddenly evolves, before the second measurement

projects onto the eigenbasis of the final Hamiltonian. Accord-

ingly, the probability to do the work  is given

by the probability  of obtaining Ei for the first mea-

surement outcome, followed by the conditioned probability

 of obtaining  for the second. The work distrib-

ution is therefore obtained as [33]

(1)

At the absolute zero, only the unperturbed ground state remains

in the initial state summation

(2)
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Figure 1: Valence levels and (broadened) DOS for the neutral (C60) and ionized ( ) fullerene molecules, as computed with the DFT approach
outlined in the main text. In C60 the projected density of s and p states contribute for 44.2% and 55.3% of the occupied DOS, respectively. In  the
s-DOS and p-DOS contributions change to 51.1% and 48.8%, respectively. The residual part (not shown) is left to the projected density of polarized
d-states.

and the work distribution tends to the initial state average

, which coincides with the

emission spectrum of the system in response to the sudden

perturbation [37,38]. Interestingly enough, the cross-section for

the ionization of a core level εc due to absorption of an X-ray

photon of energy  in matter results from two factors [39]:

core-electron photo-ejection and valence-electron dynamic

screening. The former is expressed by the photo-current proba-

bility, involving the initial core state and the final photo elec-

tron state. The latter is manifested by the work distribution in

Equation 2, which can be interpreted as the probability density

that the work  is used to excite valence elec-

trons at the expense of the kinetic energy of the photoelectron, ε

[17-19]. Indeed, P(W) accounts for the N − 1 electrons that do

not directly participate in the ionization process. This spectator

electron approach is particularly suitable for mono-energetic

X-rays that cause deep core-level photoelectrons to be ejected

from the sample ( ).

2 Initial and final Hamiltonians
We have seen that the key ingredients of the work distribution

(Equation 2) are the many-body states of the unperturbed and

perturbed Fermi systems. In the following we will take the

different physical situations set forth above. Specifically, we

will first investigate the valence electronic structure of a

fullerene molecule in the absence or presence of a 1s core hole,

whose fast creation induces an abrupt attractive perturbation of

the electrons of the system. Then, we will shift the focus to a

harmonically trapped gas of fermionic atoms with an embedded

impurity, whose fast excitation can be modeled by a suddenly

introduced repulsive δ-potential.

2.1 The fullerene molecule
Consider a cluster of 60 carbon atoms arranged in a fullerene

molecule of radius 3.1573 Å, whose equilibrium geometry and

characteristic bond lengths (of 1.4474 and 1.3696 Å, respective-

ly) are reported Figure 1. We can do some work on the cluster

by core-ionizing one of its atoms to form a molecular cation.

The valence electrons are then thrown out of equilibrium,

tending to dynamically relax and compensate for the presence

of a positive charge. To depict the rearrangement of the

valence electronic structure, we use a DFT approach in

which we replace the core electrons of a specific atom in

the molecule with an effective core potential (ECP) of the

Stevens–Basch–Krauss (SBK) type [40], whose parameters are

adjusted to describe neutral and core-ionized atomic carbon

[10]. The valence electrons in this reference atom are described

by a d-polarized double split-valence pseudo-basis, being

specifically designed for the considered ECP and optimized for

the neutral (C60) and ionized ( ) clusters [18,19]. As for the

core and valence electrons of all other atoms in the compound,

we select the d-polarized triple split-valence basis set denoted

6-311G* [41]. We then perform a spin-restricted DFT calcula-

tion [42-44], working under the generalized gradient approxi-

mation (GGA) for electron exchange and correlation, parame-

terized by the Perdew–Burke–Ernzerhof (PBE) functional
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Table 1: Squared overlap integrals between the lowest and highest occupied valence states in the neutral C60 molecule (v = 1, ε1 = −18.8575 eV and
v = vF = 120, ε120 = εF = 0, respectively) and some valence states in the ionized C60 molecule (where  = −3.132 eV). The reported values confirm
the remarkable non adiabatic effects induced by core hole creation (see also below in Figure 2).

v′ v′

1 −19.6357 0.428741 115 −1.2163 0.000219
2 −18.6425 0.554975 116 −0.2204 0.791579
3 −18.4765 0.009811 117 −0.0762 <10−6

4 −18.4765 <10−6 118 −0.0653 0.004186
5 −17.7799 0.003615 119 −0.0163 <10−6

6 −17.5758 0.000141 0 <10−6

7 −17.5214 <10−6 121 1.3361 0.042688
8 −17.4262 0.000096 122 1.6871 <10−6

9 −17.4126 <10−6 123 1.8096 0.000134
10 −16.5364 0.000784 124 2.6232 0.012468
11 −16.4248 0.000091 125 2.8799 <10−6

[45,46]. All electron spin pairs from the clusters are explicitly

taken into account except for the one removed from the refer-

ence atom. Convergence for C60 and  leads to optimized

ground state wave functions made of single Slater determinants

of 179 pairs of occupied molecular orbitals (MOs), which are

linear combinations of 1135 contracted Gaussians from both the

ECP basis, localized at the reference atom, and the 6-311G*

basis centered on all other atoms. To simplify the notation we

denote such composite basis sets as  for C60, and

 for . The corresponding coefficients (eigenvectors)

are computed from the secular equations following DFT energy

minimization.

The electron spin pairs occupy 59 core levels, that is, one per

carbon atom excluding the reference atom, and 120 valence

levels. The core MOs are mainly given by linear combinations

of the s-contracted Gaussians of the ECP+6-311G* basis

set, where the valence coefficients of the ECP set tend to

compensate for the absence of the core electrons in the refer-

ence atom. The core eigenvalues are nearly degenerate with a

percentage standard deviation below 0.15%. The average core

energy εc for C60 overestimates the experimental C 1s energy

by a percentage error of about 7%. Possible causes for this

discrepancy are discussed in [18]. The valence states are of the

form  and , where  and  are

the valence-eigenvectors of coefficients for C60 and , res-

pectively. As shown in Figure 1, the valence electronic struc-

ture of the neutral and ionized clusters is made of discrete

energy levels separated by an average energy difference of

about 0.2 eV. The predicted band gap value of 1.82 eV for C60

is consistent with experiments [47] and previous calculations

[18]. Core ionization leads to a decrease of the band gap in 

of about 0.5 eV (Table 1).

In order to determine the symmetry of the valence MOs, we

compute a density of state (DOS) distribution from the superpo-

sition of Lorentzian lines of equal height, centered at the occu-

pied/empty MO energy values. We then use the valence coeffi-

cients to construct a weighted sum yielding the projected distri-

butions arising from the s, p, and d components of the ECP+6-

311G* basis set. The normalized profiles of the total DOS, the

s-DOS, and the p-DOS for both the neutral and ionized mole-

cules are also displayed in Figure 1, where a broadening width

of about 0.5 eV is applied. We see that the lowest occupied

valence MOs, with energies in the range of ca. 10–20 eV below

the Fermi level, have a dominant s character. At higher ener-

gies, up to about 2–3 eV below the Fermi energy, the p compo-

nents become more and more significant, tending to compete

with the s components and forming sp2 and sp3 bonds. On the

other hand, the valence MOs close to the Fermi energy are

mainly made of p orbitals pointing along the radial directions of

the buckyball. Based on the analysis of the relative areas of the

projected densities of states, we may infer that core ionization

produces an enhancement of the s component with respect to

the p component of about 5%, while polarization effects due to

the d orbitals play a marginal role. This is not surprising

given the s character of the core hole. The key feature of

the many-electron response to core ionization is given by

the squared overlaps between the valence MOs of C60

and . The latter are straightforwardly computed from

the 1135 × 1135 overlap matrix , by left (right)

multiplication with the valence eigenvectors  and , respect-

ively. To have a more clear idea of the change of the valence

electrons wavefunctions in the surrounding of the core-hole site,

we focus on the ends of the occupied valence spectra. In par-

ticular, we consider the highest and lowest occupied MOs of the

neutral molecule and some MOs of the ionized molecule to
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Figure 2: Lowest and highest occupied valence states for the neutral fullerene molecule (C60) and corresponding valence states in the ionized
fullerene molecule ( ). The sudden switching mechanism leads most of the content of the unperturbed Fermi state to be found in a state lying
about 0.22 eV below the perturbed Fermi level. On the other hand, the lowest- energy unperturbed valence state gets mainly mixed with the first two
occupied perturbed valence states (see also Table 1).

have similar binding energies relative to the perturbed Fermi

level. The squared overlap between these states are listed in Ta-

ble 1, while some of their orbital shapes are shown in Figure 2.

We see that core ionization has more direct influence on the

bottom of the valence band, inducing the lowest occupied state

 of C60 to get mostly mixed with the first two occupied

states of , namely  and . Significant modifica-

tions, however, affect also the unperturbed Fermi state

, which looses essentially any correlation with the

perturbed Fermi state , and is mainly mapped to the

-state keeping some non negligible leakage to some

other perturbed states with similar energies. This is a

clear signature of the highly non-adiabatic behavior inherent

to the process. As a global measure of the disturbance

brought by the core hole, we take the valence electron

ground states  and , for the neutral and ionized mole-

cule, respectively, and compute their squared overlap

which denotes the ground-state survival probability. Comple-

mentarily, the shake-up probability is given by 

and takes a value of 19.10%.

2.2 The harmonically trapped Fermi gas
We now take a spin 1/2 gas of weakly interacting atoms in a

parabolic potential of a typical length x0 and trapping frequency

ω. Neglecting the inter-particle forces, the one-fermion Hamil-

tonian is that of a harmonic oscillator

(3)

with eigenvalues , and eigenstates , which

have the coordinate representation

(4)

expressed in terms of the Hermite polynomials Hv(x/x0) of order

v = 0,1,…. We now add a two-level impurity trapped in an

auxiliary potential and brought in contact with the gas. The

impurity is initially in its ground state with a negligible scat-

tering interaction with the fermions in their equilibrium con-

figuration set by H(x). We suppose doing some work on the

system by quickly exciting the impurity. Then, the gas feels a

sudden perturbation V(x,t) = V(x)θ(t), assumed to have an



Beilstein J. Nanotechnol. 2015, 6, 755–766.

760

Figure 3: Energy levels and (broadened) density of states for a trapped gas of spin 1/2 fermions having a number of occupied states (N = 122) similar
to that of the valence band of C60. The critical parameter is set to α = 0.1, which corresponds to an impurity potential height of .

s-wave like character. Further details on how this set-up can

efficiently describe an ultra-cold Fermi gas probed by a two-

level impurity, with the parabolic potential mimicking the

magneto-optical trapping potential, may be found for example

in [25,28,31,32,48]. Let us further assume that the perturbation

is spatially structure-less and localized at the center of the trap,

e.g., V(x) = πV0x0δ(x). The perturbation strength V0 can be para-

meterized as , where vF is the Fermi

number (corresponding to 2(vF + 1) fermions, and α a dimen-

sionless parameter, which turns out to be the critical parameter

of the theory [32,35,49].

The simple structure of V(x) allows one to handle the diagonal-

ization of the total Hamiltonian H′(x) = H(x) + V (x), which

describes the gas after switching on the potential. In particular,

the perturbed eigenfunctions in presence of the excited impu-

rity can be written in terms of the parabolic cylinder functions

(5)

with normalization constants ηv′ and associated level energies

. We see that  =  and εv′ = εv

when the perturbed quantum number v′ takes non-negative

integer values. Furthermore, due to the fact that ,

for v = 1,3,…, the odd harmonic oscillator eigenfunctions

and eigenenergies are left unaffected by the δ-potential, i.e.,

v′ = v = 1,3,…. As for the perturbed wave functions corres-

ponding to v = 0,2,…, the stationary Schrödinger equation for

H′(x) leads the implicit condition [35,50]:

(6)

which ensures the physically correct behavior for . Now,

since the Γ-function has poles for negative integer values,

Equation 6 leads to v′→v for α→0, and v′→v + 1 for α→∞.

Then, v′ takes a real values in the range [v,v + 1] for v = 0,2,….

More importantly, each fixed values of α and vF yields a one-to-

one mapping of , εv onto , εv′. This means that we can

first obtain the v′ values by numerically solving Equation 6,

compute the perturbed energies εv′ and the normalization

constants ηv′, and then find the perturbed states . In Figure 3

and Figure 4 we show an example of gas with 122 fermions

(vF = 120) in absence and presence of an impurity potential

characterized by the critical parameter α = 0.1. Similar to the

fullerene case, we see that the sudden perturbation is more effi-

cient on the lower part of the energy spectrum, which corre-

sponds to a more pronounced shifting of the perturbed even

levels towards the unperturbed odd ones. This is also attested by

comparing the unperturbed and perturbed density of levels,

obtained by superimposing Gaussian functions of width

0.15 , centered at the occupied/empty energy values. A more

quantitative analysis comes from the squared overlaps ,

some of which are numerically computed and reported in

Table 2. In contrast to the C60/  case, we notice that the

states involved is the εv, ↔εv′,  mapping are always

strongly correlated by a squared overlap value larger than

≈ 0.74.

Nonetheless, a much more regular dynamic screening is experi-

enced by the gas, involving single fermion states with squared

overlaps . Indeed we observe a non-negligible

leakage of the unperturbed wave function onto the perturbed

eigenfunctions, having an energy larger than  than the

unperturbed energy value. With the two eigenbases  and

, we can form Slater determinants and compute the many-

body states of the gas. In particular, the unperturbed and

perturbed ground states include the lowest occupied 2(vF + 1)

one-particle states, and the ground-state survival probability can

be computed from
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Figure 4: Lowest and highest occupied one-particle wave functions and levels for a harmonically trapped gas of N = 122 fermions in absence and
presence of the excited impurity, whose perturbation is characterized by the critical parameter α = 0.1 (see also Figure 3 and Table 2). The unper-
turbed and perturbed Fermi levels, relative to the lowest occupied one-particle state, are  and , respectively.

Table 2: Squared overlap integrals in a spin 1/2 trapped gas of 122 particles with a sudden switching impurity potential characterized by the critical
exponent value α = 0.1 (see also Figure 3). The lowest occupied (v = 0, ε0 = 0.5 eV) and highest occupied (v = 120, ε120 = εF = 120.5) states are
mostly correlated to the corresponding perturbed states. Shake-up effects though involve the perturbed states which are closer in energy.

v′ v′

0 1.38233 0.742291 110 110.85 0.00147324
2 3.32392 0.108816 112 112.848 0.00234289
4 5.28188 0.046455 114 114.845 0.00429914
6 7.24826 0.0265519 116 116.843 0.010353
8 9.22 0.017436 118 118.84 0.0518994
10 11.1955 0.0124231 120 120.838 0.882784
12 13.1739 0.00934134 122 122.836 0.0234252
14 15.1546 0.00729833 124 124.834 0.00692288
16 17.137 0.00586813 126 126.831 0.00325807
18 19.121 0.00482476 128 128.829 0.00188445
20 21.1063 0.00403857 130 130.827 0.00122525

The shake-up probability  increases with

increasing height of the impurity potential barrier. In the

example considered here (Figure 3 and Figure 4) this

probability takes a percentage value of 19.26%, which is

extraordinarily similar to that of fullerene. Suppose we

keep the critical exponent constant, i.e., we fix α = 0.1, but

reduce the number of fermions in the gas to N = 38 first, and

then to N = 16. The corresponding shake-up probabilities will

decrease to 15.36% and 12.17%, respectively. Suppose, as a

complement, we keep the particle number constant, say,

N = 122, and increase α to 0.2 first, and then to 0.3. The corres-

ponding shake-up probabilities will increase to 29.3% and

35.7%, respectively.

3 Work distribution decomposition and many-
fermion shake-up
To characterize the zero-temperature features of the work distri-

bution (Equation 2), we decompose it according to the number

of fermions excited to the final states by the external potential.

In other words, we re-arrange the final state summation in

Equation 2 to write it in the form
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(7)

Table 3: Ground-state survival probability and shake-up probabilities involving excited states with 1–3 particles above the Fermi level. The closure
relation  , projected onto the unperturbed ground state, is verified with an error of less than 5% in all cases.

C60
α = 0.1 α = 0.1 α = 0.1 α = 0.1
N = 122 N = 84 N = 38 N = 16

no shake (%)
80.899 80.739 81.876 84.635 87.834

one body (%)
17.031 14.975 13.736 11.614 8.091

two body (%)
0.249 0.211 0.147 0.067 0.012

three body (%)
≈10−3 ≈10−5 ≈10−7 ≈10−7 ≈10−8

98.450 95.929 95.759 96.317 95.937

where Pk(W) accounts for the work done in all processes which

lead the system to occupy a final state with k fermions above

the Fermi level. Now, we use the formalism of creation and

annihilation operators, denoted  and cv′, respectively, acting

on the perturbed ground state, to express the Pk(W) distribu-

tions as shown in Equation 7 (see below).

Here, the squared overlaps can be reduced to the calculation of

matrix determinants involving the unperturbed and perturbed

one-fermion eigenstates of the initial and final Hamiltonians,

i.e., the unperturbed ground state set  and the perturbed

set obtained by taking  and replacing the elements

with . We also need to point out that in the

work distribution of fullerene we do not include the core elec-

trons, which do not take part in the photo-ejection. Indeed, the

overlap between the initial and final many-body states of the

“spectator” core levels is 1, within a numerical error of ca. 10−6.

This fact is not surprising, notwithstanding the differences in

the one-electron core states (Figure 2), because excitations from

the core to the valence part of the one-electron initial and final

spectra are not allowed.

The situations that we have considered so far encompass rela-

tively weak external perturbations, for which the most promi-

nent contribution is the no-shake line

(8)

This term corresponds to a process in which the work

 is used to distort the initial ground state, and leave

all the particles in the system relaxed into the final ground state.

Indeed, as already pointed out in the previous section and

emphasized by the results shown in Table 3, the no-shake inten-

sity, i.e., the ground-state survival probability, takes percentage

values of the order of about 80% either in the core-ionized

fullerene molecule or in the Fermi gas with N = 122 particles,

shaken up by a δ-potential of critical exponent α = 0.1. The Pk≥1

distributions define the shake-up process, with k fermions

jumping between the (unperturbed) ground state and the

(perturbed) excited states in response to the perturbation [35].

Also from Table 3, we can see that the largest part of the

fermion shake up lies in one-fermion excitations processes, e.g.,
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Figure 5: Zero-temperature work-distribution components (Equation 7) for a C60 molecule undergoing core ionization, and a Fermi gas of N = 16,
122 particles, shaken-up by a perturbation of critical index α = 0.1. Vertical values are give in percent, following Table 3.

in P1(W), while a residual contribution is from two-fermion

excitations, included in P2(W), and three-fermion shake up may

be generally neglected. The unitarity relation

is verified within ca. 95–98% by restricting the f-summation to

final states involving not more than two electrons excited at the

considered energies. These features are supported by the plots

in Figure 5, where we show how the partial components P0, P1

and P2 contribute to the zero-temperature work distribution

(Equation 2). Besides the primary line, i.e., the no-shake inten-

sity, we observe a sequence of secondary lines accounting, res-

pectively, for one- and two-fermion transitions that are sep-

arated by 1–2 order of magnitudes. The three-fermion response

lines (not shown) have maximum intensities smaller than

10−5% and 10−7%, in the two cases discussed here. Not visible

enough, the shake lines of the harmonically trapped Fermi gas

are almost uniformly spaced in steps of . The non-perfect

periodicity is due to the slight changes in the perturbed one-

fermion energies (see also Table 2), which where not caught by

the perturbation model of [32,35].

To finalize the analysis, we briefly discuss how to include

temperature effects into Equation 2, approximated as

As shown in the perturbation model of [32,35], the role of the

temperature is mostly accounted for by a Gaussian broadening

characterized by the variance

which is related to the particle–hole statistics, as well as to the

diagonal matrix element of the external potential. In the

fullerene case, another source of broadening is given by the

core-hole lifetime. Besides, to cope with real photoemission

experiments a further Gaussian term due to experimental uncer-

tainties is needed [18,19]. Working at low thermal energies, we

can therefore set , with B(W) denoting a

broadening function, which includes the “thermal” Gaussian of

standard deviation δβ. In Figure 6, we apply these considera-

tions to determine the low-temperature profile of the work

distributions for the core-ionized fullerene molecule and the

shaken-up Fermi gas. Comparing the fullerene distribution with

the experimental C 1s line shape from a thick C60 film, we find

a significant match of the low-energy satellite structure, at exci-

tation energies below about 4 eV, with the theoretical spectrum,

apart from a peak position shift of 0.31 eV. As a further com-

parison, in Figure 6 (left panel) we report the work distribution

obtained from the C60 and  eigensystems with a three-para-

meter hybrid functional by Becke [51] (the B3LYP functional)

instead of the PBE functional. Both the PBE and B3LYP results

appear to be consistent within a peak position shift of about 1

eV, though the relative peak position structure of the experi-

mental satellites seems to be better reproduced by the B3LYP

functional. The Lorenztian broadening of the spectra are consis-

tent with the calculated life-time broadening of the C 1s level in

graphite [52].

On the other hand, the numerical shake-up response of the

harmonically trapped Fermi gas is in excellent agreement with



Beilstein J. Nanotechnol. 2015, 6, 755–766.

764

Figure 6: Low-temperature work distributions for: (left) a C60 molecule undergoing core-ionization; (center,right) a Fermi gas of N = 16, 122 particles
shaken-up by a perturbation of critical index α = 0.1. In the C60 case, Pγ is the zero-temperature distribution  broadened by
a Lorentzian of width γ = 0.05 eV; Pγ,σ is obtained by convoluting P(W) with a Voigt distribution [18,19], whose Gaussian standard deviation
σ = 0.172 eV and Lorentzian width γ = 0.068 eV are adjusted to some measurements on thick fullerene films. The experimental data are taken from
[12,13] and plotted on the same arbitrary unit scale [18,19]. The theoretical distributions are computed with the DFT approach outlined in Section 2.1,
using both the PBE and the B3LYP functionals. In the two examples of the Fermi gas, the zero-temperature work distributions are broadened with a
Gaussian whose standard deviation δβ corresponds to , and compared with the analytical model of [32,35]. Vertical values are given in
percent relative to the no-shake peak.

the analytical model presented in [32,35], in which a compact

form was given to the characteristic function of work

being the Fourier transform of the work distribution, and

including all possible excited states, i.e., all possible compo-

nents (Equaiton Equation 7). Two differences, inherent to the

perturbation method, lie in the non-perfect periodic sequence of

the shake-up peaks, which is significant only for low particle

numbers, and in the critical exponent of the perturbation ap-

proach denoted α0 giving rise to the thermal broadening .

Accordingly, the effective temperatures corresponding to the

numerical and analytical curves are different. When the pertur-

bation series giving rise to  is summed over all orders, α0

will be eventually renormalized to α, and δ0β to δβ.

Conclusion
We have presented a numerical approach towards the calcula-

tion of the work distribution for a many-fermion system, shaken

up by the sudden quench of a work parameter. To show the

versatility of the method, we have discussed applications in two

very diverse energy ranges, namely: (i) a fullerene molecule,

where the absorption of a photon leads to a critical rearrange-

ment of the ground state of the interacting valence electrons,

witnessed by the Anderson orthogonality catastrophe; and (ii) a

non-interacting gas of harmonically trapped fermions, where the

catastrophe can be simulated in a controlled fashion by the

appropriate embedding of a single probe qubit. We have suit-

ably selected the parameters of the Fermi gas, in order to have

roughly the same overall shake-up content as the fullerene

molecule. In the plots of Figure 5 and Figure 6, we have

explored the detailed features of the Anderson orthogonality

catastrophe in the sequence of the shake-up satellites. The com-

parison with experiments on C60 indicates the reliability of the

approach, putting emphasis on the present capability of DFT

codes in predicting the excited state structure of molecules and

solids [53]. On the other hand the comparison of the results

from the trapped Fermi gas with the analytical model of [32,35]

is suggestive of a deeper analysis into the definition of the crit-

ical exponent of the model, leaving open the possibility for

further investigations in the weak-coupling regime.
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