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Abstract
Background: Understanding the dynamics of ultracold quantum gases in an anharmonic potential is essential for applications in the

new field of cold-atom scanning probe microscopy. Therein, cold atomic ensembles are used as sensitive probe tips to investigate

nanostructured surfaces and surface-near potentials, which typically cause anharmonic tip motion.

Results: Besides a theoretical description of this anharmonic tip motion, we introduce a novel method for detecting the cold-atom

tip dynamics in situ and real time. In agreement with theory, the first measurements show that particle interactions and anharmonic

motion have a significant impact on the tip dynamics.

Conclusion: Our findings will be crucial for the realization of high-sensitivity force spectroscopy with cold-atom tips and could

possibly allow for the development of advanced spectroscopic techniques such as Q-control.
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Introduction
The development of novel scanning probe techniques has lead

to tremendous improvements in investigating nanomaterials [1].

Starting with conventional force and tunneling microscopes

[2,3], various methods have emerged for detecting topographic

[4], electromagnetic [5,6], thermal [7] and even chemical prop-

erties [8,9] of matter. At the same time, the research field of

quantum atom optics provided access to new “quantum matter”

[10,11]. Since then, ultracold atoms have been used for studying

multiple many-body effects, ranging from Mott-insulator transi-

tions [12] to Feshbach [13] and Efimov [14] resonances. Prepar-

ing and manipulating these quantum gases in the direct vicinity

of micro- and nanostructured surfaces [15-22] paved the way to

cold-atom surface probing [23-28] and finally allowed for the

realization of cold-atom scanning probe microscopy [29-31].

Here, an ultracold cloud of atoms is used as sensitive probe tip

in a scanning microscope. First realizations have demonstrated

http://www.beilstein-journals.org/bjnano/about/openAccess.htm
mailto:a.guenther@uni-tuebingen.de
http://dx.doi.org/10.3762%2Fbjnano.7.148
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this to be suitable for topographic [29] and dispersion force

measurements [30]. Thereby, the basic principles of force

microscopy have been transferred to cold atoms, including a

dynamic operation mode [29]. Here, the cold-atom tip oscil-

lates with respect to the surface of interest and information is

extracted from measuring the position-dependent oscillation

amplitude and frequency. Precision force spectroscopy [32]

with cold atoms comes thus into direct reach, with expected

force sensitivities in the yN-regime [29]. Therefore, the dynam-

ics of cold-atom tips in an anharmonic potential must be fully

understood and a method for real-time observation of the tip

motion must be developed.

In this manuscript, we experimentally and theoretically study

the dynamic motion of an oscillating cold-atom tip in an anhar-

monic potential. The dynamic is shown to be completely differ-

ent from conventional solid state tips, which are typically

treated as rigid bodies. For the cold-atom tip, the situation is

much more complex as the tip behaves like a thermal gas of

atoms, best described via a distribution function. We show that

collisions between particles and the anharmonicity of the poten-

tial will have a strong influence on the overall tip dynamics. In

addition, we introduce a novel method for local density probing,

allowing detection of the tip dynamics in real time. The first

measurements on oscillating cold-atom tips show very good

agreement with theoretical and numerical calculations. Our

findings will be essential for future force spectroscopy with

cold atoms and could possibly allow for active feedback control

of the tip motion. Methods like Q-control [33,34], which have

been very successful in conventional force microscopy [35,36],

are therefore realizable.

The article is structured as follows: We start by describing the

theory of tip motion in harmonic and anharmonic potentials.

Using analytic expressions and numerical calculations, we

describe the expected tip motion, including particle dephasing

and collision effects. In the following section, we introduce a

specific real-time observation scheme of the tip motion, which

is based on sensitive single atom detection. We analyze the ex-

pected detection signal for harmonic and anharmonic tip

motion. In the experimental section we present results on oscil-

lating tip measurements and compare them to theory. Special

attention is given to the effects of particle dephasing and colli-

sions. The manuscript closes with a conclusion and a methods

section, describing the details of the numerical simulations.

Theory of tip dynamics
The dynamics of a cold-atom tip in an anharmonic potential is

fundamentally different from the dynamics of a conventional

solid-state tip. While the solid tip behaves like a rigid nonde-

formable body and can be described by its position  and

momentum  the cold-atom tip is a weakly interacting

gas of thermal atoms. It is characterized by the position  and

velocity  of the individual particles i = 1…N. To simplify the

problem, thermal atomic ensembles are typically described by

their phase-space distribution function  defining the

probability for an atom to be found at position  and

momentum . Similar to the equation of motion, a partial

differential equation (PDE) can then be found from Liouville’s

theorem, characterizing the cloud’s dynamics in phase space

[37]

(1)

with the classical Hamiltonian  and the Poisson

brackets {}. If particle interactions come into play, the dynamic

becomes even more complex. Liouville’s theorem must then be

replaced by the Boltzmann kinetic equation [37], which adds an

additional collision integral  to the right hand side of

Equation 1. At ultracold temperatures in the μK regime, this

integral accounts for s-wave scattering processes, with a cross

section σ given by the s-wave scattering length a0, which is

 for distinguishable and  for indistinguish-

able particles. Deriving an analytic solution to Equation 1 is

typically nontrivial; therefore, numerical solutions are often re-

quired.

If the cold-atom tip is cooled further, a Bose–Einstein conden-

sate is created and the tip shows quantum behavior [38,39]. In

this case the quantum tip behaves like a superfluid and is typi-

cally described by a quantum mechanical wave function

 The tip dynamic is then found by solving the corre-

sponding Schroedinger equation. Particle interactions can be

taken into account via a mean field approach, yielding the so

called Gross–Pitaevskii equation [40]. In this work, however,

we restrict the discussion to the dynamics of a pure cold-atom

tip, described by a thermal gas of atoms.

Dynamics in harmonic potentials
We start by analyzing the dynamics of a cold-atom tip in a

harmonic potential. Therefore, we describe the tip as an ideal

gas of noninteracting particles that are in thermal equilibrium.

Each particle is exposed to the same external potential, which

we assume to be one-dimensional

(2)

with m being the particle mass and ω0 the resonance frequency.

Such harmonic potentials are typically found in the center of
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magnetic or optical traps, which are used to confine ultracold

atoms in an ultrahigh vacuum environment. This assures life-

times of the cold-atom tip in the 100 s regime, as collisions with

background atoms are strongly reduced.

For a single particle i, the dynamics in such a harmonic poten-

tial is determined from the equation of motion and the starting

conditions xi0 = xi(0) and  resulting in periodic par-

ticle oscillations

(3)

with oscillation amplitudes  and phases

φi = arctan(vi0/(ω0xi0)). Independent of the start energy, all par-

ticles oscillate at the same frequency and relative phases are

conserved.

The full dynamics of the cold-atom tip, however, is best under-

stood by means of its phase-space distribution 

Following Liouville’s theorem from Equation 1 and using  =

p2/2m + V(x), the tip dynamics is characterized by

(4)

Assuming a thermalized cold-atom tip at temperature T, which

is displaced at time t = 0 by an amount A from its equilibrium

position, the solution to Equation 4 becomes

(5)

with μ(t) = Acosω0t, σx = σv/ω0 and  The shape

of the cold-atom tip is then given by the spatial density distribu-

tion

(6)

At all times, the cold-atom tip shows a Gaussian shape with

constant width σx. The dynamics is thus fully included in the

center-of-mass oscillation μ(t). In this sense, a cold-atom tip

oscillating in a harmonic potential behaves very much like a

solid tip in an atomic force microscope.

To illustrate the dynamics of the cold-atom tip, Figure 1a shows

 in the two-dimensional phase space at four different

times after the initial displacement. The data are derived from a

numerical simulation of the cold atom tip with 5 × 105 atoms at

500 nK, moving in an harmonic potential with ω0 = 2π × 50 Hz

and an initial displacement of A = 200 μm.

Figure 1: Numerical simulation of an oscillating cold-atom tip in a
harmonic potential of fundamental period T = 1/(50 Hz): (a) phase-
space density and (b) density profiles at t = 0 T, 2.25 T, 4.5 T, 6.75 T
(i–iv) after the initial tip displacement. The simulations do not change if
particle collisions are taken into account.

Due to Liouville’s theorem, the phase-space volume of the

atomic cloud is conserved at all times. As all particles oscillate

through the phase space with the same frequency ω0, the shape

of f is also conserved. The spatial density distribution is then

found by integrating the phase-space distribution along the

velocity axis. For the situation in Figure 1a, it becomes

immediately clear that the tip shape remains constant and the

dynamics is only due to a center-of-mass oscillation with fre-

quency ω0. Figure 1b shows the density profiles of the probe tip

as extracted from the phase space densities in Figure 1a.
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The situation remains unchanged even if particle interactions

are taken into account. As the curvature of the potential is con-

stant in space, the cloud is always in thermal equilibrium, such

that collisions will not affect the dynamics of the cloud in phase

space. This will dramatically change in anharmonic potentials,

as discussed in the next section.

Dynamics in anharmonic potentials
To understand the motion of cold-atom tips in an anharmonic

potential, the nonlinear motion effects that occur if a classical

point mass is oscillating in a cubic oscillator are implemented.

Here, the potential is given by

(7)

with ε describing the strength of the anharmonicity. The corre-

sponding equation of motion is given by

(8)

Assuming the starting conditions x(0) = x0 and  this

differential equation can be solved in the limit 

using second order perturbation theory in combination with the

Poincaré–Lindstedt method to avoid secular terms [41]. With

αi = αi(x0,ω0,ε) being the contributions of the base frequency

(i = 1) and higher harmonics (i > 1) to the particle dynamics

[41,42], the solution reads

(9)

which is a periodic function in time with the fundamental fre-

quency ω depending on the initial displacement [42].

(10)

For arbitrary starting conditions the oscillation frequency in an

anharmonic potential will thus depend on the total initial energy

E (kinetic and potential energy) of the particle. At the same

time, the spectrum of the oscillation will contain not only the

fundamental frequency but also higher harmonics (see Equa-

tion 9).

Following the above considerations and neglecting particle

interactions, the dynamics of a cold-atom tip in an anharmonic

potential can be understood as superposition of all single parti-

cle oscillations. Figure 2 illustrates the resulting tip dynamics in

the two-dimensional phase space.

Figure 2: Numerical simulation of an oscillating cold-atom tip in an
anharmonic potential of fundamental period T = 1/(50 Hz) and anhar-
monicity ε = 2 × 108 m−1 s−2: (a) phase-space density and (b) density
profiles at times t = 0.25 T, 2.25 T, 4.25 T, 6.25 T (i–iv) after the initial
tip displacement. Particle interactions (collisions) are not taken into
account.

The tip parameters have been chosen as before (T = 500 nK,

N = 5 × 105, ω0 = 2π × 50 Hz) with an anharmonicity

ε = 2 × 108 m−1 s−2. Figure 2a shows the distribution function

 as derived from a full numerical simulation at four

different times after the initial displacement of A = 200 μm.

Figure 2b shows the corresponding density profiles. Depending

on the initial energy, each particle follows its own phase-space

trajectory and oscillates clockwise around the origin with its

own fundamental frequency. Low energetic particles will follow

trajectories closer to the phase space origin and oscillate faster

than particles with higher energies. Right after the initial dis-

placement of the cold-atom tip, all particles will start their oscil-

lation in phase, resulting in a narrow distribution function and a

clear center-of-mass oscillation (i). As time goes by, the higher

energetic particles will drag more and more behind, leading to a

relative dephasing between particle oscillations (ii–iv). This

results in a spread of the phase-space distribution and a center-

of-mass shift towards the equilibrium position. For the density

distribution, the dephasing will thus lead to a broadening of the

distribution function, a decrease of the peak density and a

damping of the center-of-mass oscillation. Finally, the atoms

will be spread over the whole oscillation region, with no center-

of-mass oscillation remaining. The density distribution will then

become static. Following Equation 10, the timescale τd of the

dephasing is given by the relative spread of the fundamental

oscillation frequencies
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(11)

with the energy spread ΔE calculated for a Gaussian start distri-

bution with initial displacement A. Dephasing will then occur

on a timescale

(12)

Atom tips at lower temperatures, smaller displacements, and

less anharmonic potential will then lead to increased dephasing

times. However, even for small oscillation amplitudes, Equa-

tion 12 sets an upper limit to the dephasing time

(13)

depending only on the tip temperature and anharmonicity of the

trap.

Collisions between particles will only have to be taken into

account in 2D and 3D systems, where energy can be transferred

between the different spatial directions. Collisions will then

lead to a frequent redistribution of energy among the particles,

leading to heating in the transverse directions. Therefore, the

center-of-mass motion is damped even stronger as in the case of

noninteracting particles. Figure 3 shows the resulting center-of-

mass motion of an oscillating cold-atom tip (blue solid line), as

derived from a 3D numerical calculation, which includes parti-

cle collisions.

Figure 3: Center-of-mass oscillation of a cold-atom tip in an anhar-
monic potential with/without particle collisions (blue/red solid line). The
simulation parameters have been chosen as before: T = 500 nK,
N = 5 × 105 atoms, ε = 2 × 108 m−1 s−2,
(ωx,ωy,ωz) = 2π × (50, 500, 500) Hz, A = 200 μm.

The simulation parameters are identical as before, while the

anharmonic trap has been extended in the transversal direction

by a harmonic confinement with frequency ωy/z = 2π × 500 Hz.

For comparison, Figure 3 includes the result for noninteracting

particles, showing a reduced damping. Following Equation 12,

the damping time is 660 ms.

Detecting tip dynamics
The detection of a cold-atom tip is fundamentally different

from conventional scanning probe techniques. In an atomic

force microscope, for instance, the tip position can be moni-

tored in real-time using methods like laser beam deflection

[43,44], laser interferometry [45,46] or self-sensing [47-49]. For

cold-atomic ensembles, the standard detection method is

absorption imaging [50]. Here, the atoms are illuminated with

coherent light, and a shadow image of the cloud is recorded on

a CCD chip. This yields a two-dimensional density profile of

the cold-atom tip, integrated along the direction of imaging.

Typically, the cloud can be released from the trap before

imaging, which allows for an additional ballistic expansion

during the time of flight. For long expansion times, the

absorption image yields the two-dimensional velocity

distribution of the cold-atom tip. Assuming certain

symmetries ,  the complete phase-space distr ibut ion

function can then be obtained from a time-of-flight

image series. Unfortunately, absorption imaging is a fully

destructive process, such that the cold-atom tip is destroyed

due to energy transfer from absorbed photons. At ultracold tem-

peratures, the absorption of a single photon is sufficient to

remove the corresponding atom from the tip. This was the main

limitation in the first realization of a cold-atom scanning probe

microscope [29], as new cold-atom tips could only be gener-

ated on timescales of about 60 s. The measurement time was

thus orders of magnitude larger than in conventional scanning

probe techniques.

Just recently, however, we have developed a new detection

technique, which allows for local probing of the density distri-

bution of a cold-atom tip in real time [51]. Therefore, a weak

beam of atoms is outcoupled from the tip via microwave radia-

tion and detected with multiphoton ionization and subsequent

ion detection. Using this scheme, the outcoupling can be

measured with high-temporal resolution and single-atom sensi-

tivity. The outcoupling position can be precisely tuned via a

microwave frequency, such that the outcoupling rate is a direct

measure for the tip’s local density. This way, the density profile

of a cold-atom tip at rest could be measured in situ with negli-

gible atom losses [51].

Here, we extend the scheme to measure the dynamics of a cold-

atom tip. Therefore we keep the outcoupling position  fixed
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in space and monitor the time-dependent ionization rate Γ(t) at

the ion detector.

(14)

Measuring Γ(t) will then unveil dynamics within the distribu-

tion function.

Detecting harmonic tip oscillations
For harmonic potentials the time-dependent density distribution

of an oscillating tip is given via Equation 6, resulting in a time-

dependent detector signal

(15)

As a periodic function, it can be expanded to harmonic oscilla-

tions at multiples of the fundamental frequency ω0.

(16)

Here we used the Jakobi–Anger expansion with Iα being the

modified Bessel functions of first kind. In the limit of small

oscillation amplitudes A << σx, the leading terms in this expan-

sion become

(17)

showing, that the count rate is in lowest order modulated at

frequencies ω0 and 2ω0. The specific form of the detector signal

will depend strongly on the outcoupling position x0. For

|x0| >> A the detector signal is dominated by the fundamental

oscillation frequency ω0. For |x0| << A, however, this frequen-

cy component becomes negligible and the detector signal shows

a modulation at twice the tip frequency. For x0 = 0, the modula-

tion at frequency ω0 vanishes completely. Figure 4a shows the

expected count rates and their Fourier spectra for two different

outcoupling positions x0 = 0 and x0 = σx for a small oscillation

amplitude A = 0.5σx.

The results are well described by the approximation from Equa-

tion 17. This changes for larger oscillation amplitudes, where

higher harmonics must be taken into account as shown in

Figure 4b for a cloud with oscillation amplitude A = 2σ. In-

Figure 4: Simulated detection signal and its Fourier transform for a
detector based on local density probing, as derived from a numerical
simulation of a cold atom tip (N = 5 × 105, T = 500 nK) oscillating in an
harmonic potential (ω0 = 2π × 50 Hz). The oscillation amplitudes A
have been set to (a) 0.5σx, (b) 2σx and (c) 200 μm. The outcoupling
positions x0 are fixed to 0 (blue solid lines) and σx (red solid lines).

creasing the oscillation amplitude further A = 200 μm ≈ 9σx,

more and more higher harmonics appear (Figure 4c).

Detecting anharmonic tip oscillations
In the case of anharmonic potentials, the density distribution

shows an oscillation, which seems to be damped due to

dephasing of different particle trajectories. Starting with a well-

localized cloud, it spreads more and more over the whole oscil-

lation region. As the detector probes the density of the cloud at

a fixed position, the detector signal will show clear signatures

of a damped oscillation. The frequency spectrum of this signal

will be dominated by oscillations at the base frequency and the

first harmonics. Nevertheless, higher harmonics will rapidly

appear not only due to contributions from the Bessel functions

in Equation 16, but also from the anharmonicity of the potential.

Figure 5 shows the expected detector signal alongside the

Fourier spectrum for the same tip parameters as before with an

anharmonicity ε = 2 × 108 m−1 s−2, an oscillation amplitude

A = 2σx and a detection position x0 = σx. The signals are shown

including (blue lines) and neglecting (red line) particle colli-

sions. For comparison, also the harmonic results (black line) are

shown. The oscillation of the tip and the damping due to

dephasing are clearly visible in the anharmonic data. As ex-

pected, the damping is strongest for the data including particle

collisions.

Experiments
Our experimental setup is based on a cold-atom apparatus, the

same as that used for the first cold-atom scanning probe micro-
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Figure 5: Simulated detection signal (a) and its Fourier transform (b)
for a detector based on local density probing, as derived from a numer-
ical simulation (N = 5 × 105, T = 500 nK). The tip oscillates in a
harmonic/anharmonic trap (black lines/colored lines) with
ω0 = 2π × 50 Hz and ε = 2 × 108 m−1 s−2. Particle collisions are taken
into account (blue lines) or neglected (red lines). The oscillation ampli-
tude and the outcoupling position have been fixed to A = 2σx and x0 =
σx.

scope [29,52]. It uses standard cooling and trapping techniques

to generate cold-atom tips of 87Rb atoms in an ultrahigh

vacuum environment [53]. The trapping and manipulation of

the cold-atom tip is achieved via a magnetic microchip, holding

a variety of micrometer-sized current conductors [54]. They

produce magnetic trapping potentials that hold the cold-atom tip

close to the chip surface. Tuning the microchip currents, not

only the shape but also position and velocity of the cold-atom

tip and the underlying potential can be precisely controlled.

The single-atom-detection scheme for measuring the tip dynam-

ics is illustrated in Figure 6.

The technique is based on microwave outcoupling of the

trapped atoms [51] with subsequent photoionization and ion

detection [58]. The microwave couples atoms from the trapped

 to the nontrapped 

state. Due to Zeeman splitting in presence of the trapping field,

the transition frequency between these states is detuned to the

zero-field resonance at 6.8 GHz. Depending on the microwave

frequency, the outcoupling position can thus be tuned across the

cloud. Each value of the microwave frequency addresses atoms

at a specific magnetic field amplitude, defining closed reso-

nance surfaces for the microwave outcoupling. For harmonic

potentials, these resonance surfaces are elliptically shaped.

However, due to gravity, the cold-atom tip is displaced from the

magnetic trap center and the resonance shells can be approxi-

mated plane [51]. The outcoupled atoms leave the trap and

become ionized via a three-photon ionization process. The re-

sulting ion beam is captured and guided by an ion optics [55]

and finally detected by a channel electron multiplier (CEM)

Figure 6: Detecting cloud dynamics. Using microwave radiation, indi-
vidual atoms are outcoupled from the cold-atom tip. The outcoupling is
strongly localized to the region of resonant microwave coupling (reso-
nance sheet), typically shaped flat (black solid line) and tunable via the
microwave frequency (dashed solid lines). The outcoupling rate is
proportional to the atomic density within the resonance sheet and the
total microwave power [51]. Depending on the cloud dynamics, this
overlap changes in time, causing a time varying outcoupling rate (left
and right half-image). The outcoupled atoms leave the trap and
become ionized via a three-photon ionization process with lasers at
778 nm and 1064 nm. The resulting ion beam is captured and guided
by ion optics [55] (not shown) and finally detected by a channel elec-
tron multiplier (CEM) [56,57]. Individual ions are detected with
temporal resolution of 8 ns, allowing for the real-time monitoring of the
outcoupling rate and the cloud dynamics.

[56,57], yielding single-atom resolution. While individual

events are detected with 8 ns resolution, the CEM saturates at

count rates of about 1 MHz. This limits the maximal observ-

able tip frequency to within this regime. However, in our specif-

ic experimental realization, the maximal observable tip frequen-

cy is at about 1 kHz, due to technical limitations in the ioniza-

tion process.

For the experiments shown below, we prepare cold-atom

tips in a potential, which in harmonic approximation is

cigar shaped and characterized by the trap frequencies

ωx/y/z = 2π × 85/70/16 Hz. The cold-atom tip consists of about

N = 6 × 105 atoms and has a temperature of T = 300 nK. All

these parameters are deduced from standard absorption imaging

[50].
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Results and Discussion
Cold-atom tip at rest
We start our analysis by measuring the outcoupling rate for a

cold-atom tip at rest. Therefore, we irradiate a microwave

(MW) for about 1 s and measure the number of outcoupled

atoms. Repeating the experiment several times yields the spec-

tral response of the cold-atom tip. Figure 7a shows the

measured ion detection rate as function of the microwave

detuning Δ with respect to the zero-field transition frequency.

Thereby, each microwave frequency can be connected to a spe-

cific position y0 of the resonance sheet [51], yielding a position

dependent response function, as shown in Figure 7b. This func-

tion basically shows the density distribution of the cold-atom tip

as expected for a cold cloud of 300 nK.

Figure 7: (a) Detection rate as function of the microwave detuning
(spectral response), averaged over three measurements. For each
measurement the microwave has been swept with a rate of 286 kHz/s,
while monitoring the corresponding ionization rate. The microwave
detuning is shown with respect to the zero-field transition frequency of
≈6.8 GHz between the rubidium hyperfine ground states. Each micro-
wave frequency addresses a specific outcoupling plane at position y0.
(b) Detection rate as function of y0.

A full theoretical description of the expected response function

has been given in [51] and is used here to verify the experimen-

tally measured microwave response. The blue lines in Figure 7

show the results of this ab initio theoretical calculation as ex-

pected for our experimental parameters. They show excellent

agreement with the measurements.

Oscillating cold-atom tip
Knowing the spectral response of the cold-atom tip, we investi-

gate tip oscillations and their corresponding detection signal.

Therefore, we initiate precise center-of-mass oscillations in the

direction of gravity (y-direction), by displacing the magnetic

trap non-adiabatically, i.e., on a timescale much faster than the

corresponding trap frequency. As measured with absorption

imaging, the oscillation amplitude is A = 1.33σx = 16.2 μm.

Using our single-atom detection scheme the resulting dynamics

of the cold-atom tip can be monitored in situ and real time. To

transform the measured timestamps of the ion detection events

to a time-discrete signal, we bin the timestamps in bins of 1 ms

width. To allow for a detailed comparison of the experimental

data to the numerical calculations, which do not include parti-

cle losses and microwave-induced dipole potentials, we inten-

tionally chose low outcoupling rates. To remain a good signal-

to-noise ratio, all data have thus been averaged over 50 experi-

mental cycles. At higher outcoupling rates, tip oscillations can

be detected in a single run.

Figure 8 shows an example of the measured ion signal as aver-

aged over 50 experimental runs with the outcoupling position

tuned to y0 = −18.3 μm (Δ = 2π × 1.84 MHz). The obtained

signal nicely represents the experimental cycle. In the first

100 ms the ionization lasers were turned on, followed by the

microwave radiation within the next 100 ms. Starting at

t = 300 ms the cold-atom tip is first displaced adiabatically

within 200 ms by an amplitude of 53 μm. Tip oscillations are

now excited by moving the magnetic trap back to its starting

position non-adiabatically on a timescale of 12 ms. After this

excitation process, the ion count rate shows clear oscillations at

the trap’s base frequency. As expected, these oscillations show

a clear damping.

Figure 8: Ion signal during and after the excitation of the cold-atom tip
to a center-of-mass oscillation.



Beilstein J. Nanotechnol. 2016, 7, 1543–1555.

1551

For further data analysis, we restrict the signal to the pure

oscillation region starting at t = 512 ms. In addition to

the binned detector signal, we also calculate the Fourier

transform and the autocorrelation function as described

in the methods section. These calculations are done on the

single particle events rather than the binned detector signal to

improve the signal-to-noise ratio. Figure 9 shows an example of

the binned detector signal alongside the Fourier transform and

the autocorrelation function as extracted from the measurement

at y0 = 32.6 μm (Δ = 2π × 2.03 MHz).

Figure 9: Comparison of the measured (red dots) and simulated (blue
lines) data for the detection signal, the normalized autocorrelation
function and the Fourier transform. The outcoupling position has been
fixed at y0 = 32.6 μm (Δ = 2π × 2.03 MHz).

The autocorrelation function shows a nicely damped oscillation

which can be used to extract the tip’s oscillation frequency. The

same information can be obtained from the Fourier transform.

Compared to the detector signal, we find the autocorrelation

function to be generally better suited for extracting the oscilla-

tion frequency and amplitude, as it shows less noise. This stems

from the fact that the autocorrelation function is based on a

histogram of N2 particle pair distances (see methods section),

whereas the detector signal is based on the N detection events.

In addition, frequency components with small amplitude are

strongly suppressed in the correlation analysis. This can be seen

when using a generalized form of the detector signal from

Equation 16

(18)

with the coefficients Kj depending on the specific oscillation pa-

rameters and outcoupling position. The normalized autocorrela-

tion function then reads

(19)

with the amplitude of the jth frequency component given by

 Weak frequency components are thus suppressed

quadratically as compared to the original detector signal. There-

fore, the autocorrelation function will typically show a clear

single frequency oscillation. However, the phase information 

is lost in the correlation analysis.

Signal-to-noise ratio
As described earlier, the detection signal strongly depends on

the outcoupling position. For an application-orientated assign-

ment of a cold-atom tip, the signal-to-noise ratio should thus be

optimized. Therefore, we take a series of oscillation measure-

ments (N = 6 × 105, T = 300 nK, A = 16.2 μm) for outcoupling

positions ranging over the whole cloud extension. From the cor-

responding autocorrelation of the detection signal we find that

besides damping, the main frequency component is given by the

trap’s base frequency at 70 Hz. Following Equation 19 we

extract the oscillation amplitude K1 and calculate a signal-to-

noise ratio where SNR = Γ0K1/ΔΓ0 with Γ0 =  and ΔΓ0 is

the averaged error bar of the 50 oscillation measurements at

each outcoupling position. The result is shown in Figure 10

alongside the spectral response function.

Figure 10: Signal-to-noise ratio (red points) as measured for different
outcoupling positions alongside the atomic response function (blue
line).

As expected, the best signal-to-noise ratio is achieved at the

slope of the tip response function. Here, a small oscillation

amplitude leads to a large and stable signal modulation. The

outcoupling at the maximum of the spectral response should

typically lead to a minimum in the signal-to-noise ratio. Howev-

er, the measurement shows that this minimum position is

slightly displaced from the maximum of the spectral response,

which is likely due to the trap’s anharmonicity and particle

collisions.
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Comparing experiment to theory
To verify that the damping of the experimentally observed tip

oscillation is solely due to the anharmonic component of the

trap potential, we performed a full numerical simulation of the

ultracold cloud dynamics and the microwave outcoupling

process. Thereby, we tried to model the physical reality as accu-

rately as possible. This includes particle interactions, as well as

a realistic model of the total external potential. Moreover, the

tip oscillation is excited similar to within the experiment, along

one of the trap’s principal axes and including particle collisions.

In addition, we use a more elaborate implementation of our

detection scheme. The basic principles of the numerical simula-

tion, the tip potential and the detection scheme are outlined in

the methods section.

Figure 9a shows a comparison of the simulated detection signal

and the measurement for outcoupling at y0 = 32.6 μm

(Δ = 2π × 2.03 MHz). To account for the finite detection effi-

ciency of our ion detector [59], both signals are normalized to

their maximum values. The corresponding autocorrelation func-

tions and Fourier spectra are shown in Figure 9b,c. The simula-

tions show almost perfect agreement with the experiment, in-

cluding the relative strength of the spectral lines. As the outcou-

pling point is positioned at the edge of the spectral response, the

main frequency components are given by the trap’s base fre-

quency ωy = 2π × 70 Hz and its first harmonic. However, the

Fourier analysis reveals some minor deviations between

simulations and measurement, as the experimental data show

minor contributions also at the other trap frequencies

ωx/z = 2π × 85/16 Hz. This is due to an imperfect excitation in

the experiment, where the cloud is not oscillating exactly along

the trap’s principal axis.

The simulation also reproduces the correct damping of the tip

oscillation. As the simulations do not include any frictional

effects, we therefore conclude that the observed damping is

only due to the dephasing of the cold-atom tip in the anhar-

monic potential and due to particle collisions. To separate both

effects, Figure 11 shows experimental data for outcoupling at

y0 = 22.7 μm (Δ = 2π × 1.98 MHz), as compared to theoretical

simulations with and without particle collisions taken into

account.

Good agreement between theory and experiment is only found

when particle collisions are included. Without collisions, the

damping is less pronounced and does not match the experimen-

tal data.

Conclusion
In conclusion, we have investigated the dynamics of an oscil-

lating cold-atom tip in an anharmonic potential and demon-

Figure 11: Comparison of the measured outcoupling rate (red dots)
and the simulated rates, as derived from a full numerical simulation in-
cluding (blue line) and excluding (black line) particle collisions. The
outcoupling rates are normalized and derived at an outcoupling posi-
tion y0 = 22.7 μm (Δ = 2π × 1.98 MHz).

strated a new technique for monitoring the tip oscillation in situ

and real time. The oscillation frequencies and amplitudes can be

easily extracted from the corresponding Fourier spectra and

autocorrelation functions. The method will lead to tremendous

improvements in the new field of cold-atom scanning probe

microscopy by increasing the measurement speed by several

orders of magnitude. Moreover, a full understanding of the tip

dynamics will be essential for future applications of cold-atom

scanning probe microscopy. The realization of precision force

spectroscopy by reconstructing the trap anharmonicity from the

oscillation data will be on the forefront of upcoming research.

Although similar methods exist in conventional atomic force

microscopy, our finding will be essential for describing the dy-

namics of the cold-atom tip, as it does not behave like a solid

object. Our simulations show that dephasing effects and parti-

cle collisions must be taken into account to give a proper de-

scription of the tip motion.

Methods
Fourier transform and autocorrelation
Based on the single particle timestamps ti of all detection events

i = 1…N, we calculate both the Fourier transform and the

autocorrelation function. Doing these calculations on the

single particle events rather than the binned detector signal im-

proves the signal-to-noise ratio. With the detector signal

 the Fourier transform becomes

(20)

The normalized autocorrelation function is given by

(21)
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with  being the time average. Using our detection signal f(t),

which is defined on the finite measurement time T, we find

 and thus

(22)

This function is transformed to a time discrete signal by appro-

priate binning over a correlation time interval Δτ

(23)

where Nτ is the number of particle pairs (i,j) with temporal sep-

aration (ti − tj)  [τ,τ + Δτ]. To account for the finite measure-

ment time, Nτ is corrected by a factor (1 − τ/T)−1 yielding

(24)

The correction factor is necessary as large time differences τ are

less likely to be observed due to the finite measurement time. In

practice, the autocorrelation function is found by generating a

histogram of all particle pair time separations and subsequent

normalization.

Numerical simulation methods
The dynamics of the cold-atom tip is simulated via a particle

simulation, which is based on solving the equation of motion

for each individual particle. Therefore, we either use analytic

solutions (1D harmonic simulations) or a Runge–Kutta method.

Depending on the simulation complexity, we reduce the num-

ber of particles by simulating a smaller number of test particles

[60]. To consider ultracold collisions (interactions) between the

atoms, we implemented a direct simulation Monte Carlo

(DSMC) method [60,61]. The DSMC method takes s-wave

collisions of the indistinguishable 87Rb atoms into account, with

a scattering cross section  and a s-wave scattering

length a0 = 5.7 nm. The concept of the DSMC method is to

decouple the atomic motion and the collisions for timescales

considerably smaller than the averaged time between two colli-

sion of an atom [62,63]. To include the microwave outcoupling

into the simulation, we refer to a lattice simulation by

describing the particle density on a lattice. The transfer to the

lattice description is achieved using the cloud-in-cell algorithm

[64]. Using this method, we get a numerical representation of

the particle density for every point of the defined discrete time

vector.

Model of the total external potential
The main contribution to the trapping potential results from the

magnetic field distribution  yielding a potential energy

 with μB being the Bohr magneton. It is pro-

duced from field generating wires and coils inside our vacuum

chamber, which are partially implemented to a microchip sur-

face. A detailed description of the microchip geometry and the

other field generating elements can be found in [54] and [65].

For the experiments described here, the magnetic trap is gener-

ated from two parallel wires (QP2 wire and compression wire),

which are oriented along z and separated by Δy = 1.9 mm. The

QP2 wire is implemented on the microchip surface and the

compression wire is embedded into the microchip holder. With

counter-propagating currents, they produce a linear quadrupole

field above the chip surface with atomic confinement in radial

(x,y)-direction. Trapping in z-direction is achieved by superpo-

sitioning an inhomogeneous field along z. It is produced by a set

of chip wires (transport wires) oriented along z and imple-

mented on the back side of the microchip. Additional homoge-

neous fields along y and z are applied via magnetic coils far

away from the trapping region.

Including gravity, we model the total external potential via

(25)

Here, we include the field of the QP2 and compression wire

explicitly using an infinite long wire approximation. The axial

confinement is approximated via a harmonic potential along z.

Homogeneous fields in y and z-direction are taken into account.

Using this model function, the full trap anharmonicity in the

x,y-direction is reproduced.

For the numerical calculation we fix the parameters of the

model function as follows: For the currents we use the experi-

mental parameters (IQP2 = 0.85 A and Icomp = −3A). The offset

field along z can be deduced from the spectral response mea-

surement as described in [51], yielding Boff = 0.857 G. The

remaining parameters ωz and B0 are fixed by matching the trap

frequencies of the model potential (harmonic approximation at

the trap center) to the trapping frequencies measured via

absorption imaging.
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The center-of-mass oscillation is initiated similar to the experi-

ment by displacing the trapping potential along the y-axis. In

the experiment this displacement is achieved by changing B0

via a pair of coils (transfer coils). For the simulations, we

change the model parameter B0 in the same ratio as the current

in these coils (≈12%), leading to oscillations in the radial (x,y)-

directions.

Microwave outcoupling
All simulations in the two theoretical sections are based on the

simplified outcoupling theory from Equation 14. For the simu-

lations in the experiments section, a more elaborate implemen-

tation is used. It follows from [51], with the outcoupling rate

given by

(26)

Here  is the magnetic part of the total external poten-

tial,  is the particle density and Vres the volume enclosed

by the resonance surface, which is defined via the points of

resonant microwave coupling. Ω describes the microwave cou-

pling strength (Rabi frequency), which depends on the micro-

wave power, its polarization and the specifically coupled

hyperfine states. It is calibrated independently via standard

Landau–Zener sweeps [51] and assumed to be constant across

the outcoupling region. Using the magnetic part of Equation 25

and the densities from the numerical particle simulation, Equa-

tion 26 can be evaluated, yielding the expected detection signal.
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