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Abstract
The frequency shift noise in non-contact atomic force microscopy (NC-AFM) imaging and spectroscopy consists of thermal noise

and detection system noise with an additional contribution from amplitude noise if there are significant tip–sample interactions. The

total noise power spectral density DΔf(fm) is, however, not just the sum of these noise contributions. Instead its magnitude and spec-

tral characteristics are determined by the strongly non-linear tip–sample interaction, by the coupling between the amplitude and

tip–sample distance control loops of the NC-AFM system as well as by the characteristics of the phase locked loop (PLL) detector

used for frequency demodulation. Here, we measure DΔf(fm) for various NC-AFM parameter settings representing realistic mea-

surement conditions and compare experimental data to simulations based on a model of the NC-AFM system that includes the

tip–sample interaction. The good agreement between predicted and measured noise spectra confirms that the model covers the rele-

vant noise contributions and interactions. Results yield a general understanding of noise generation and propagation in the

NC-AFM and provide a quantitative prediction of noise for given experimental parameters. We derive strategies for noise-opti-

mised imaging and spectroscopy and outline a full optimisation procedure for the instrumentation and control loops.
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Introduction
Non-contact atomic force microscopy (NC-AFM) [1,2] is an

unmatched surface science tool, especially when it comes to

studying non-conducting surfaces [3,4], to map sub-molecular

structures [5] or to measure forces [6] and force fields [7] with

highest resolution. The primary imaging signal in NC-AFM is

the frequency shift Δf of a probe resonator carrying a tip inter-

http://www.beilstein-journals.org/bjnano/about/openAccess.htm
mailto:philipp.rahe@nottingham.ac.uk
mailto:reichling@uos.de
https://doi.org/10.3762%2Fbjnano.7.181


Beilstein J. Nanotechnol. 2016, 7, 1885–1904.

1886

acting with the sample surface [2], typically a cantilever, a

tuning fork, or a needle sensor [8].

The resolution of force measurements is limited by the noise in

the frequency shift signal [9,10], which strongly depends on the

noise floor of the detection system, the frequency response of

the frequency demodulator (mostly a phase-locked loop

detector, PLL), cantilever properties and ultimately thermal

noise [11]. The footing of our work are these precursor studies,

and the rigorous system analysis introduced by Polesel-Maris et

al. [12], showing that the frequency shift noise at close tip–sam-

ple distance is increased due to a coupling of the phase-locked

loop with the amplitude and the distance control loops.

While noise in the amplitude control loop itself is essentially in-

dependent of the frequency shift noise without tip–sample inter-

action, amplitude and topography feedback loop noise are

coupled into the frequency shift noise in the presence of

tip–sample forces [12]. Ultimately, the noise in the frequency

shift signal determines the base performance of all downstream

processing such as the topography signal or the Kelvin probe

force signal [13].

Here, we use the formalism derived by Polesel-Maris et al. [12],

introduce realistic transfer functions for the control electronics,

cantilever properties and tip–sample interaction, to quantitative-

ly determine the frequency shift noise in the presence of signifi-

cant tip–sample interaction, to derive predictions for noise spec-

tra and to correlate them with experimental data obtained under

realistic measurement conditions. We find excellent agreement

between simulated and experimental results for noise in a canti-

lever-based NC-AFM with optical beam-deflection and mea-

surements performed in an ultra-high vacuum environment,

where the cantilever Q-factor is close to the intrinsic value Q0

[14,15]. Our analysis can, however, be applied to any NC-AFM

detection scheme and sample environment, specifically also to

measurements in liquids where signal-to-noise-ratio considera-

tions play a paramount role [16-18]. From our findings, we

derive a general strategy for adjusting instrumental settings and

control loops for noise-optimised operation. A full glossary of

all of these settings and further quantities relevant in this

context are compiled in appendix A.

Our analysis is based on four fundamental steps: First, the canti-

lever oscillation amplitude is determined precisely by cali-

brating the voltage signal proportional to the cantilever dis-

placement with a method described in detail elsewhere [19].

This yields the detection sensitivity  (see also Supplemen-

tary Information section 1 of [11]). Second,  is used to

convert the displacement noise voltage signal into the displace-

ment noise quantities, namely the displacement noise power

spectral density  of the detection system (frequently re-

ferred to as the noise floor) and the thermal noise power spec-

tral density  [11]. Note that the latter cantilever ther-

mal excitation noise contribution can be predicted from the

oscillator properties and temperature [11]. Third, the frequency

response Hfilter of the PLL system is used for describing the

propagation of noise from the cantilever oscillation to the fre-

quency shift signal at the output of the frequency demodulator.

This frequency response function strongly depends on the PLL

filter settings [11] and will here be modelled for a typical exper-

imental setup described in section “Noise propagation model”

and appendix C. Fourth, we determine the explicit frequency

response functions HA and Hz of the amplitude and topography

control loops, respectively. This allows an adjustment of the

amplitude control loop and the frequency response of the PLL

prior to the measurement when tip–sample interaction is absent

(i.e., with the tip retracted). The frequency response of the dis-

tance control loop, however, inherently depends on the tip–sam-

ple interaction which is, in turn, preset by the z-position along

the force–distance curve [12]. Therefore, this control loop needs

adjustment under conditions of the envisaged measurement.

After describing experimental methods and procedures in

section “Experimental”, we introduce the NC-AFM model used

to simulate noise generation and propagation in section “Noise

propagation model”. In section “Tip–sample interaction”, we

then discuss the implications of the tip–sample interaction on

the coupling of control loops. After a check of validity and

consistency of the model by testing simulation results against

measurements for the case of absent tip–sample interaction in

section “Noise with negligible tip–sample interaction”, we

systematically explore cases with significant tip–sample interac-

tion in section “Noise with significant tip–sample interaction”.

The investigation comprises measurements and simulations for

scanning the surface at a constant tip–sample distance (con-

stant-height mode) as well as with the frequency shift kept at a

certain value by the z-control loop (topography mode). For the

simulations, the filter settings of the control loops are varied

over ranges of values typically present in experiments, and an

artificial but realistic model potential is used for the tip–sample

interaction. We validate the noise model including tip–sample

interaction and describe a rational procedure for choosing

system parameters for noise-optimised measurements in section

“Conclusions and system optimisation”. All equations within

this work are written using power spectral densities DX for the

quantity X, while simulated and experimental results are de-

scribed in terms of amplitude spectral densities .

Experimental
All experiments are performed using a commercial NC-AFM

system (UHV 750 variable temperature STM/AFM, RHK Tech-
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Figure 1: Schematic representation of functional elements of an NC-AFM described by transfer functions Hy. Quantities DX denote noise power spec-
tral densities of the signal X. Symbols “+” and “×” denote entry points of noise and entanglement of signals, respectively.

nology, Inc., Troy, MI, USA) operated at room temperature and

employing the beam-deflection method to measure the cantile-

ver displacement. Tip positioning and approach is accom-

plished by the SPM 100 control system (RHK Technology,

Inc.). For this and all other instruments we introduce scaling

factors to convert voltage signals delivered by the instruments

to physical units. The detection sensitivity  for the herein

presented data is determined to 52.5 nm/V from an amplitude

calibration (see [19] and Supporting Information of [11]). A

PLLpro2 control system (RHK Technology, Inc., Troy, MI,

USA) is used for frequency demodulation and amplitude stabili-

sation. This control system encodes the frequency shift Δf in

volts using SΔf = −30 Hz/V. For the distance control loop, we

employ a digital PI controller of the HF2LI device (Zurich

Instruments AG, Zürich, Switzerland) as this instrument

provides loop filters with well-defined characteristics. Noise

measurements at the Δf and amplitude outputs of the

PLL system as well as at the topography output of the

distance controller are performed using a SR770 spectrum

analyser (Stanford Research Systems, Inc., Sunnyvale, CA,

USA). The topography signal is scaled using the sensitivity

 = 9.36 nm/V for the scanner z-piezo response. This value

was determined from measuring step heights on CaF2 surfaces.

The cantilever is a commercial silicon cantilever (type PPP-

NCH, Nanoworld AG, Neuchâtel, Switzerland) with

an eigenfrequency of f0 = 305337.6 Hz at room temperature

and a quality factor of Q0 = 43900 determined as described

elsewhere  [14] .  The noise  f loor  is  determined to

 and the modal stiffness of the canti-

lever [20] to k0 = 32.4 N/m from a measurement of the ther-

mally excited cantilever oscillation [11] with the spectrum

analyser of the HF2LI device. The cantilever oscillation is

stabilised at an amplitude of A = 13.6 nm, which corresponds to

an amplitude of Az = A cos(θ) = 12.6 nm perpendicular to the

surface due to the inclination of θ = 22.5° between cantilever

and sample surface given by the cantilever mount. These exper-

imental parameters are used in all simulations presented within

this work.

The tip–sample interaction modelled by the parameter βts (see

section “Tip–sample interaction”) is derived from a measured

Δf(zp) curve shown in Figure 4). Here, Δf is plotted against the

piezo position zp. Depending on the operation mode (constant-

height or topography), the parameter βts can be obtained by

using either the frequency shift set-point Δfset for the topogra-

phy feedback or by the average frequency shift  measured

at the tip–sample distance zp with deactivated topography feed-

back loop.

For the numerical evaluation of signal vs time traces and noise

spectra, the explicit frequency response functions and system

parameters for our experimental setup are used; all frequency

response functions are listed in the appendix and the implemen-

tation in MATLAB is available in Supporting Information

File 1. This approach enables a numeric evaluation in absolute

physical units and, therefore, allows the direct comparison be-

tween experiment and our model.

Results and Discussion
Noise propagation model
Figure 1 illustrates the signal and noise propagation in a typical

NC-AFM setup. The cantilever is excited by a drive signal with

frequency fexc and amplitude Aexc. Additionally, the cantilever
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Figure 2: Model for signal and noise propagation in an NC-AFM, highlighting the tip–sample interaction, PLL demodulator and control loops. Signal
paths indicated by dotted lines are only relevant for the case of significant tip–sample interaction.

experiences an excitation due to thermal noise expressed by the

power spectral density  = 2kBT/(k0Q0πf0). The cantilever

responds to these excitations with an oscillation of amplitude A

dictated by the cantilever response function Hc(f). This cantile-

ver oscillation is measured as the cantilever displacement

signal. Noise contributions in this signal are described in fre-

quency space by the thermal noise displacement power spectral

density  and by the detection system noise power spec-

tral density , the latter caused by the electronic detec-

tion system [11]. The sum of the detection system noise power

spectral density  and the thermal displacement noise

power spectral density  yields the total displacement

noise power spectral density Dz(f).

The cantilever displacement signal is fed into both, the ampli-

tude controller and the PLL demodulator. The amplitude

controller measures the oscillation amplitude A typically using a

root-mean-square algorithm or lock-in detection and adjusts the

excitation amplitude Aexc to keep the oscillation amplitude A at

the set-point Aset. The amplitude measurement includes a low-

pass filter with the response function Hlp(f), while the ampli-

tude controller is described by the frequency response Hac(f).

Noise in the amplitude signal is characterised by the amplitude

noise power spectral density DA(f).

The PLL demodulator determines the frequency shift

Δf = fr− f0, which is the difference between the cantilever reso-

nance frequency fr in the presence of tip–sample interaction and

the cantilever eigenfrequency f0. Furthermore, the demodulator

provides the cantilever excitation signal with frequency fexc that

is nominally identical to the current resonance frequency fr of

the cantilever. The frequency shift noise power spectral density

DΔf(fm) depends on the filter and loop settings of the PLL

demodulator expressed by its frequency response function

Hfilter(fm), where fm represents the frequencies of the modula-

tion side bands measured relative to the resonance frequency fr

[11]. Thus, the cantilever excitation signal contains noise from

both, the PLL and the amplitude controller.

The frequency shift signal is fed into the distance controller,

which adjusts the tip–sample distance to maintain a frequency

shift equal to the set-point Δfset. The tip–sample distance is

expressed as the position zp of the z-piezo (see below in

Figure 3) and is in this context commonly referred to as the to-

pography signal. The distance-dependent frequency shift Δf(zp)

is governed by the details of the tip–sample interaction forces,

and is herein for a few specific tip–sample distances charac-

terised by the two parameters αts(zp) and βts(zp) as described in

section “Tip–sample interaction”. These parameters determine

how fluctuations in the oscillation amplitude and the tip–sam-

ple distance are coupled into the frequency shift signal.

The noise propagation model used for our simulations is based

on the approach introduced in [12] and sketched in Figure 2. In
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contrast to the NC-AFM functional scheme shown in Figure 1,

here we focus on the noise signal paths and transfer blocks rele-

vant to the noise propagation. Furthermore, we investigate

amplitude noise and frequency shift noise in two separate loops

that are coupled via the tip–sample interaction. Effectively, this

approach splits the signal into a purely amplitude-modulated

component (controlled by the amplitude control loop) and a

signal with pure frequency (or phase) modulation (controlled by

the frequency control loop including the PLL) [12]. This separa-

tion stems from the small intermixing strength of the two modu-

lations, and will be justified here based on experimental

evidence.

In the amplitude control loop (top part of Figure 2), the canti-

lever displacement signal contains amplitude fluctuations de-

scribed by the noise power spectral density  and the

detection system adds the noise floor , yielding the

measured displacement noise Dz(f). The amplitude signal A

follows from the displacement signal, which is then low-pass-

filtered as described by the transfer function Hlp, and finally

contains noise with the amplitude power spectral density noise

DA(fm). This signal is fed into the amplitude controller de-

scribed by the transfer function Hac, generating the excitation

signal amplitude Aexc. The amplitude control loop is closed by

feeding this signal to the cantilever. Note that with closing the

loop, a fraction of the noise DA(fm) is fed back to the cantilever,

added to the thermal noise  and filtered by the narrow-

band cantilever response function Hc(f).

In the frequency control loop (bottom part of Figure 2), the

measured cantilever displacement signal is fed into the PLL

demodulator yielding the frequency shift signal Δf as well as the

excitation signal for the cantilever in the feedback path. The

control loop within the PLL demodulator (not shown in

Figure 2) is discussed in appendix C.2. In this frequency control

loop feedback path, displacement noise propagating from the

PLL to the cantilever excitation is weighted by the reciprocal of

the quality factor Q0. This factor defines the ratio of the cantile-

ver excitation signal to the oscillation amplitude at the cantile-

ver resonance if neither amplitude noise nor amplitude distur-

bances are present, i.e., in absence of tip–sample interactions.

The sum of excitation signal noise and thermal excitation noise

 is band-pass-filtered by the cantilever response func-

tion Hc(f) and added to the detection system noise floor

. The loop is closed by feeding this signal into the PLL.

In the case of negligible tip–sample interaction, the noise in the

frequency control loop is virtually independent from the settings

of the other control loops shown in Figure 2, although we note

that a coupling may become apparent if either of the loops is

operated in an unstable ringing configuration. If significant

tip–sample interaction is present, two more signals, one from

the amplitude and a second from the distance control loop, are

added before feeding the signal into the PLL demodulator as de-

scribed below.

The distance control loop employs a controller with transfer

function Hzc to regulate the frequency shift Δf from the PLL by

adjusting the piezo position zp. The slope βts = ∂Δf/∂z of the fre-

quency shift vs distance curve Δf(z) models the tip–sample

interaction and is usually a non-linear function of zp. The fre-

quency shift noise DΔf(fm) is converted to topography noise

 by the action of the distance controller with transfer

function Hzc. The topography noise is scaled by the tip–sample

interaction transfer function iβtsA/fm and added to other noise

contributions at the PLL demodulator input. The loop is closed

across the PLL.

The coupling between the amplitude and the frequency control

loops, which exists in the presence of significant tip–sample

interaction, is modelled by a transfer function iαtsA/fm with

αts = ∂Δf/∂A, acting on the amplitude noise . The resulting

noise is one of the contributions at the PLL demodulator input

and increases the frequency shift noise.

Tip–sample interaction
The tip–sample interaction closes the distance control loop and

it couples the amplitude control loop with the frequency control

loop. Both connections can significantly increase the noise in

the frequency shift Δf output signal compared to the case of

negligible tip–sample interaction.

The transfer of fluctuations from the piezo position zp into the

cantilever deflection signal by the distance control loop (see

Figure 2) is described by the parameter βts. This parameter is

defined as the gradient of the frequency shift signal Δf with

respect to the tip–sample distance zts (see [12] and appendix D):

(1)

(2)

The parameter βts can be parameterised by either the z-position

of the lower turning point zts (Equation 1) or using the piezo po-

sition zp (Equation 2), which is the centre position of the canti-

lever oscillation (see Figure 3). We explicitly include the ampli-

tude dependency on the frequency shift Δf by including the

oscillation amplitude component Az perpendicular to the sam-

ple surface. This dependency follows from the convolution of
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the interaction force with the weighting function due to the can-

tilever oscillation. For large oscillation amplitudes Az, the func-

tional dependence  has been found [21]. Hence, for

a small variation δzp of the zp position, βts can straightfor-

wardly be determined from the slope of the Δf(zp) curve at the

working point as illustrated by the model curve in Figure 4.

Obviously, βts strongly varies as a function of zp.

Figure 3: Relations between the piezo position zp (tip position for
resting cantilever), the lower turning point zts of the cantilever oscilla-
tion and the oscillation amplitude A as well as its projection Az on the
sample surface normal.

Figure 4: Determination of the tip–sample interaction parameter βts
from the slope of a measured Δf(zp) curve. Frequency shift data are
plotted as a function of the z-piezo position zp.

The parameter αts describes the transfer of cantilever deflection

noise  from the amplitude control loop into deflection noise

in the frequency control loop via two mechanisms. First, a vari-

ation δA in the amplitude changes the weighting function in

calculating the frequency shift from the cantilever oscillation

[21] and, thus, the magnitude of the resulting Δf. Second, the

variation leads to a shift of the lower turning point zts, bringing

the sensor into a different tip–sample interaction regime. The

coupling parameter αts is defined by [12]

(3)

For the experimental conditions within this work (see appendix

D), small fluctuations δAz of the oscillation amplitude have the

same effect as a small fluctuation δz in the center position,

namely δz = −δAz. Therefore, we use the approximation

(4)

Further details on the relation between αts and βts assuming a

model potential for the tip–sample interaction are provided in

appendix D. Short-range forces acting between the probing tip

and the sample surface are of primary relevance for our discus-

sion as they typically exhibit strong gradients. Thus, the cou-

pling strongly increases with increasing interaction when the tip

is closely approached to the surface.

Noise with negligible tip–sample interaction
We first analyse noise in the frequency shift Δf and amplitude A

channel for the case of negligible tip–sample interaction

(αts = βts = 0) to check for consistency with previous simula-

tions [12] as well as experimental results [11]. In respective ex-

periments, we prepare this situation by retracting the tip several

tens of nanometres from the sample surface.

The frequency shift noise power spectral density  strongly

depends on the PLL demodulator parameters [11] and is explic-

itly given by evaluating the frequency control loop in Figure 2

(see appendix B)

(5)

where the system parameters are those introduced in Figure 2.

We use the explicit description of our experimental system (see

appendix C for the individual frequency response functions) to

numerically evaluate Equation 5. Note that the comparison of

simulated noise spectra with experimental data is based on these

system parameters and not on fitting.

The amplitude noise power spectral density DA is calculated

from evaluating the amplitude control loop in Figure 2

(6)



Beilstein J. Nanotechnol. 2016, 7, 1885–1904.

1891

Figure 5: Measured noise spectral density (solid lines) of (a, b) the frequency shift signal and (c, d) the amplitude signal for a variation of the propor-
tional loop gain settings PPLL and PA of the PLL and amplitude control loop, respectively. The integral cutoff of the PLL loop (IPLL) and of the ampli-
tude loop (IA) are each held constant. The tip is retracted from the surface for the measurements. Model calculations (dotted lines) based on Equa-
tion 5 and Equation 6 are performed assuming negligible tip–sample interaction. The loop filter Hlp has a 3rd-order Butterworth characteristics with a
cutoff frequency of fc = 500 Hz, all other quantities are explicitly given in appendix C.

We use the explicit system parameters for our experimental

setup to evaluate Equation 6 numerically in absolute physical

units.

In Figure 5, we compile measurements (solid lines) and simula-

tions (dotted lines) for the frequency shift noise amplitude spec-

tral density  (panels (a) and (b)) and the amplitude noise

amplitude spectral density dA (panels (c) and (d)). Panels (a)

and (c) represent results for optimised amplitude loop gain

settings while varying the PLL parameters. In contrast, panels

(b) and (d) show results for optimised PLL parameters while

varying the amplitude gain settings. In all data, the amplitude

control loop filter Hlp has a 3rd-order Butterworth characteris-

tics with a cutoff frequency of fc = 500 Hz.

Figure 5a demonstrates the low-pass filter characteristics of the

PLL in the case of excessive filtering (low P-gain), optimum

operating conditions (optimum P-gain) and gain peaking (high

P-gain), respectively. The optimum frequency response is deter-

mined as described in appendix C, yielding optimum parame-

ters of PPLL = −2.1 Hz/deg and IPLL = 1 Hz. Note that the PLL

frequency response does not depend on the cantilever parame-

ters. Thus, it can be optimised for the desired detection band-

width by only considering the cantilever parameters. In contrast,

the frequency shift noise at the PLL output generated by the fre-

quency control loop depends on cantilever properties and

several other system parameters including the PLL settings. The

amplitude noise presented in Figure 5c is independent of the

PLL loop settings and, similarly, the frequency shift noise

shown in Figure 5b is independent of the amplitude loop

settings, clearly demonstrating that the amplitude and frequen-

cy control loops are not coupled unless the PLL is operated in

an unstable regime.

The spectral behaviour of the amplitude noise dA upon changing

the amplitude control loop settings is slightly different from the

behaviour observed in the frequency shift noise  upon

changing the frequency control loop gain settings as demon-

strated in Figure 5a and Figure 5d. When increasing the P-gain

of the amplitude control loop, the noise in the low-frequency
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region decreases while in this case a peak around a frequency of

about 300 Hz develops. If the amplitude control loop is disabled

(PA = 0, red line), the noise spectral density becomes large in

the low-frequency region as predicted by the simulation (dotted

line). Thus, an activated amplitude control loop effectively

compensates low-frequency noise in the amplitude signal.

Optimum performance of this loop is obtained for the parame-

ters PA = 0.08 and IA = 1 Hz using the criteria introduced in

appendix C.

In conclusion, we find excellent quantitative agreement be-

tween simulated and experimental data for various settings of

the amplitude and frequency control loop. The independence of

the frequency shift noise (amplitude noise) upon changing the

amplitude (frequency) control loop settings, respectively,

clearly demonstrates the validity of separating the system in

these two control loops as depicted in Figure 2 for the case of

negligible tip–sample interaction.

Noise with significant tip–sample interaction
Realistic NC-AFM imaging or force mapping experiments are

performed at a small tip–sample distance, or even in the repul-

sive regime [22], where large gradients of the tip–sample force

generate strong gradients in the frequency shift signal. We now

extend Equation 5 and Equation 6 to include the additional

noise contributions predicted by [12] and our system model in

Figure 2.

The noise power spectral density of the cantilever oscillation

amplitude  is not directly accessible experimentally, but can

be introduced by analysing the amplitude control loop (see

Figure 2)

(7)

The quantity  itself is not affected by the tip–sample interac-

tion. However, due to the coupling characterised by the parame-

ter αts, the noise spectral density  propagates into the fre-

quency control loop, yielding a significant contribution to the

frequency shift noise. From including this contribution in the

control loop diagram of Figure 2, we find the frequency shift

noise power spectral density DΔf as

(8)

Figure 6: Frequency shift noise spectral density dΔf for the case of sig-
nificant tip–sample interaction measured in the constant height mode
(Pz = 0, Iz = 0 Hz) in dependence on (a) the amplitude control loop
settings and (b) the tip–sample distance parametrised via the aver-
aged frequency shift . Measured curves (solid lines) are com-
pared to model predictions including tip–sample interaction (dotted
lines, Equation 8) and to the model without tip–sample interaction
(dashed lines, Equation 5). The loop filter Hlp has a 3rd-order Butter-
worth characteristics with a cutoff frequency of fc = 500 Hz.

Following the approach from the previous section, we use the

explicit system parameters and system-specific transfer func-

tions (given in appendix C) to numerically evaluate Equation 8

for comparison with the experimental data.

First, we investigate NC-AFM experiments performed in the

constant-height mode, where the tip is in close proximity to the

sample surface with the distance control loop disabled,

modelled here by setting Hzc = 0. Measurements (solid lines)

and corresponding simulations using Equation 8 (including

tip–sample interaction, dotted lines) and Equation 5 (without

tip–sample interaction, dashed lines) of the frequency shift

noise spectral density DΔf are reproduced in Figure 6. Measure-

ments and simulations are performed with enabled (PA = 0.08)

and disabled (PA = 0) amplitude control loop as shown in

Figure 6a and at two tip–sample distances characterised by the
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Figure 7: (a, b) Frequency shift noise spectral density dΔf and (c, d) topography noise spectral density  with tip–sample interaction using the con-
stant frequency-shift mode in dependence on the amplitude control loop settings and the tip–sample distance defined by the frequency shift set-point
Δfset. Measured curves (solid lines) are compared to model predictions including tip–sample interaction (dotted lines, Equation 8 and Equation 9) and
without tip–sample interaction (dashed lines, Equation 5). The loop filter Hlp has a 3rd-order Butterworth characteristics with a cutoff frequency of
fc = 500 Hz.

averaged frequency shift  as shown in Figure 6b. The

increase in the spectral noise at low frequencies in Figure 6a in-

dicates contributions from the cantilever amplitude noise cou-

pling into the frequency shift signal via the tip–sample interac-

tion. Despite some discrepancy at very low frequencies also ob-

served for the case of negligible tip–sample interaction (see

Figure 5), we find a good agreement between prediction and ex-

perimental results. Here, we can only speculate that the low-fre-

quency deviation is caused by mechanical instabilities within

the system, or by instabilities within the piezoelectric excitation

system. For example, low-frequency noise has been observed

when using photothermal excitation [23].

Disabling the amplitude control loop results in a strong increase

of low frequency noise compared to operation with engaged

amplitude control using optimum parameters (see previous

section and appendix C). The amplitude control loop effec-

tively reduces the frequency shift noise by its negative feed-

back. Furthermore, we observe an increase of the frequency

shift noise DΔf for stronger tip–sample interaction (see

Figure 6b) due to a strong coupling described by an increase of

αts at smaller tip–sample distances.

Second, we investigate the frequency shift and topography

noise in the commonly used constant frequency-shift mode

where the tip–sample distance is adjusted by the distance

control loop to keep the frequency shift at the set-point Δfset.

The topography noise spectral density  is obtained by

applying the frequency response Hzc of the distance controller

to the frequency shift noise DΔf (see Figure 2)

(9)

Figure 7 shows the measured frequency shift (panels (a, b)) and

topography (panels (c, d)) noise in the presence of the activated

distance control loop (solid lines). These experimental data are
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Figure 8: (a, b) Frequency shift noise spectral density dΔf and (c, d) topography noise spectral density  with tip–sample interaction in the constant
frequency-shift mode in dependence on the distance control loop settings. Measured curves (solid lines) are compared to model predictions including
tip–sample interaction (dotted lines, Equation 8 and Equation 9) and without tip–sample interaction (dashed lines, Equation 5). The loop filter Hlp has
a 3rd-order Butterworth characteristics with a cutoff frequency of fc = 500 Hz.

compared to simulation results based on Equation 8 including

tip–sample interaction (dotted lines) and Equation 5 without

tip–sample interaction (dashed lines).

Generally, we observe an increase of noise power in the fre-

quency range from 200 to 300 Hz, where the apparent peaking

firsthand appears to be independent from the amplitude control

loop settings. Engaging the amplitude control loop (Figure 7a

and Figure 7c) results in a reduction of noise in the low-fre-

quency regime as observed in the constant-height measurement

mode. However, the active loop has a marginal influence on the

peaking in the 200–300 Hz region. In contrast, the appearance

of this peak strongly depends on the frequency shift set-point:

The peak height increases with increased frequency shift set-

point Δfset (Figure 7b and Figure 7d). Interestingly, with acti-

vated distance control, the noise level in the low-frequency

range may even fall below the values observed without

tip–sample interaction. This demonstrates that the distance

control loop is effectively able to compensate some of the low-

frequency thermal noise by a distance adjustment and directly

suggests an optimum frequency response as outlined in

appendix C.

Finally, we investigate in Figure 8 the influence of the distance

control loop parameters Pz and Iz on the noise characteristics.

Frequency shift noise dΔf (panels a and c) and topography noise

 (panels c and d) experimental data (solid curves) are com-

pared to simulations based on Equation 8 including tip–sample

interaction (dotted lines) and Equation 5 without tip–sample

interaction (dashed lines). In all cases, the amplitude control

loop is set using optimum parameters. Data in Figure 8 are

presented for different Pz (Iz) while keeping Iz (Pz) constant, re-

spectively. Choosing the gain factors too large results in gain

peaking in the noise spectral density of the frequency shift

signal as well as the topography signal. Different Pz (Figure 8a

and Figure 8c) shift the gain peak along the frequency axis and
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we find in this example a minimum of the peak amplitude for

Pz = 0.18. This behaviour is further illustrated by discussing the

frequency and step response of the distance control loop in

appendix C. Decreasing Iz (Figure 8b and Figure 8d) reduces

the gain peaking but elevates the noise level in the low-frequen-

cy range of the frequency shift noise. In the topography noise, a

decrease of Iz significantly reduces the total noise. This effect is

not surprising as it coincides with a reduction of the gain in the

frequency range around 100 Hz and a significant slow-down of

the step-response as shown in Figure 12 of appendix C. A small

response time of the topography feedback loop causes a reduced

noise in .

Conclusions and System Optimisation
We realise that the control and data acquisition system of a

NC-AFM is a complex network of sensing, amplification and

processing stages as well as several control loops interacting

with each other. Our network analysis demonstrates the quanti-

tative description of all frequency response functions of the

NC-AFM system, including the prediction of noise confirmed

by an excellent agreement between measurement and network

modelling. This analysis especially provides experimental evi-

dence for strong noise amplification by coupling of control

loops due to the tip–sample interaction.

In regular NC-AFM operation with state-of-the-art hardware,

signal generation and noise amplification is governed by the

tip–sample interaction, which introduces the most non-linear

transfer function into the system. Therefore, the optimisation

of NC-AFM measurements by proper settings for system

parameters is not straightforward and has to be carefully

adapted to the specific measurement task. Often, corrections

are necessary during measurements upon a change in tip–sam-

ple interaction, for instance due to a change in tip–sample dis-

tance or a tip change. In such situations, best results are com-

monly obtained by following the instinct of the experienced

experimentalist.

However, the basic adjustment of the system to yield the

optimum in stability, accuracy and signal-to-noise ratio can be

done by a rational, systematic approach following the findings

described in this paper, provided the measurement system is

well characterised and offers sufficient choice and flexibility in

system parameter settings.

The starting point is always the experimental task defining the

desired spatial resolution λ that is, for instance, a fraction of the

atomic periodicity in atomic resolution imaging, and the avail-

able time for the measurement expressed by the scan speed

vscan. Assuming perfectly band-limited output signals, the

sampling theorem requires the product of scan speed and

inverse spatial resolution to be smaller than half of the detec-

tion bandwidth ΔfBW, or

(10)

This often requires a compromise as using the optimum band-

width defined by operation at the thermal noise limit [11] may

impose a scan speed that is not practical, specifically if thermal

drift is not compensated [24]. Considering the interdependence

of the control loops and the tip–sample interaction, we suggest

four optimisation steps to be performed in following order:

(1) the PLL demodulator Hfilter, (2) the frequency control loop

Hf, (3) the amplitude control loop HA and (4) the distance

control loop Hz.

In step (1), the PLL demodulator Hfilter is optimised purely

from simulating the frequency response to have a certain band-

width ΔfBW. For an integral cutoff IPLL of the PLL loop given

from the ratio f0/Q0 [25] and for a low-pass filter Hlp selected

according to the requested bandwidth ΔfBW, the feedback gain

parameter PPLL is increased until the peak threshold of 0.1 dB

is reached (see appendix C.2 for an example and further

details). As it is most desirable to work with high-Q cantilevers

[11], the frequency control loop Hf is in step (2) inherently opti-

mised from step (1) (see appendix C.2 for details). In case of

small Q values (i.e., in liquid environment [16]), the optimisa-

tion in step (2) can be performed from simulating the frequency

response with the knowledge of the system parameters f0 and Q.

Optimising the amplitude control loop response HA in step (3)

requires the cantilever parameters f0 and Q0 that can easily be

determined [14]. Here, the integral cutoff IA of the amplitude

loop is again set to f0/Q0 and the feedback gain parameter PA is

then increased until the threshold of 0.1 dB for gain peaking is

reached as outlined in appendix C.1. This optimisation can also

be performed purely from simulating the frequency response

function. In step (4), the frequency response of the distance

control loop is optimised. This requires the acquisition of a

Δf(zp) curve, from which the slope βts is calculated at the

working point. The feedback loop gains Pz and Iz are optimised

until an acceptable overshoot and a fast step response is

achieved as outlined in appendix C.3. Due to the usually immi-

nent risk of tip changes, it is advisable to plan with a safety

buffer regarding these two parameters.

Specifically the last step is most crucial and requires utmost

care, not only in experiment preparation but also during the ex-

perimental run. Following the outlined procedure will yield the

best possible result. If this is not satisfactory, the reason is often
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Table 1: Glossary of symbols used within this work.

Function arguments

f = ω/2π frequency
fm = ωm/2π modulation frequency measured relative to fr
s = σ + iω complex frequency variable

Frequency response functions

H0(iω) cantilever frequency response function
Hc(iωm) cantilever frequency response function approximated around f0
Hfilter(iωm) frequency response of the PLL system
Hlp(iωm) frequency response of the low-pass filter in the amplitude measurement
Hac(iωm) frequency response of the amplitude controller
Hzc(iωm) frequency response of the distance controller
HA(iωm) frequency response of the amplitude control loop
Hz(iωm) frequency response of the topography control loop
Hf(iωm) frequency response of the frequency control loop

Cantilever and tip–sample interaction properties

f0 modal eigenfrequency of the cantilever (fundamental mode)
fr resonance frequency of the cantilever
k0 modal stiffness of the cantilever (fundamental mode)
Q0 modal quality factor of the cantilever (fundamental mode)
Aexc cantilever drive signal amplitude
fexc cantilever drive signal frequency
Δfset frequency shift set-point

measured average frequency shift

A cantilever oscillation amplitude
Az cantilever oscillation amplitude perpendicular to the sample surface
Aset cantilever oscillation amplitude set-point
αts parameter describing the coupling between the amplitude control loop and the frequency control loop
βts parameter describing the coupling between the distance control loop and the frequency control loop

System setup parameters

zp scanner piezo position (topography signal)
zts lower turning point of the cantilever oscillation relative to the sample surface

sensitivity of the cantilever deflection and the detection system

sensitivity of the cantilever excitation piezo

SΔf Δf output signal voltage encoding of the PLL system

sensitivity of the z piezo

fc cutoff frequency of the loop filter in the amplitude and in the frequency control loop

that the base value of  is too high or that the detection

system noise contains disturbing signals, such as radio frequen-

cy interference or spurious cantilever excitation. Therefore, it is

always good practice to additionally check the measurement

signal with a spectrum analyser from the pre-amplifier all way

down to the PLL output. The quality of measurements may

dramatically be increased by removing even a minute spurious

signal generated at a critical frequency to avoid its amplifica-

tion by the system network. In this case, our optimisation

procedure can bring the NC-AFM setup to noise-optimised

performance.

Appendix
A Glossary
Table 1 is a glossary of all symbols used within this work to

parametrise noise in an NC-AFM system.
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Table 1: Glossary of symbols used within this work. (continued)

PPLL proportional loop gain of the PLL
IPLL integral cutoff of the PLL
PA proportional loop gain of the amplitude control loop
IA integral cutoff of the amplitude control loop
Pz proportional loop gain of the distance control loop
Iz integral loop gain of the distance control loop

Spectral densities

power spectral density of noise type i due to noise source j

amplitude spectral density of noise type i due to noise source j

Dz total displacement noise power spectral density

displacement noise power spectral density generated by the detection system

noise power spectral density describing amplitude fluctuations in the cantilever displacement signal

displacement noise power spectral density due to the cantilever thermal excitation

topography noise power spectral density

excitation noise power spectral density, describing the thermal excitation of the cantilever

DA amplitude noise power spectral density

frequency shift noise power spectral density at the PLL output for the case of negligible tip–sample interaction

DΔf frequency shift noise power spectral density at the PLL output

B Frequency response of control loops
We briefly outline how we calculate a closed loop response Hxy

for a loop containing frequency response functions Hi between

the input signal X and the output signal Y. For a more detailed

discussion we refer to [26]. All frequency response functions

are treated as a function of the complex frequency iω. In the

main text, we mostly evaluate the real component with respect

to f = ω/(2π) (or fm) as this “amplitude response” or “gain” can

directly be compared to experimental data. Furthermore, we

usually do not consider the signal phase in this work, as we are

interested in noise that is a result of stochastic processes. How-

ever, the frequency response functions Hi(iω) are treated as

transfer functions Hi(s) using the complex frequency variable

s = σ + iω to calculate step responses from an inverse Laplace

transformation.

Figure 9a is a block diagram of the frequency and distance

control loop of Figure 2. The model contains two closed loops

that are interlaced. Using the corresponding signal-flow graph

in Figure 9b and Mason’s theorem [26], we are able to describe

the interlaced feedback loops by one transfer function. While

the block diagram in Figure 9a focuses on the involved transfer

functions, the signal-flow graph in Figure 9b represents the

topological structure of the system. After using basic signal-

flow graph algebra [26] and following the analysis introduced

by Shinners [26], this signal-flow graph directly permits to

derive a solution for the transfer function.

Figure 9: (a) Block diagram of interlaced control loops as introduced in
Figure 2 and (b) signal-flow graph to demonstrate the derivation of the
frequency response of coupled closed loops.

According to Mason’s theorem, the general expression for the

signal-flow graph frequency response Hxy is

(11)
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where Δ is the determinant of the graph defined as

(12)

with

We exemplarily calculate the full frequency response for the

system sketched in Figure 9 where only one forward path

(H1H2H3) is in the corresponding signal-flow representation.

Therefore, the calculation reduces to determine  and Δ1.

Furthermore, two non-touching closed loops, namely H1H2H4

and H2H3H5, are present. Consequently, Δ is reduced to

 and reads

(13)

Evaluating

(14)

and

(15)

allows us to determine the full frequency response from X to Y

from Figure 9 as

(16)

If a noise power spectral density Dx is used as the input signal X

and treated by the system response Hxy we find

(17)

for the output noise power spectral density Dy [27].

C Frequency response functions
In this section, we present the explicit form of the frequency

response functions and the specific frequency response func-

tions valid for the experimental setup used for this work. The

derivation follows [11] and [12].

C.1 Amplitude control loop
The frequency response Hac of the amplitude controller is [25]

(18)

using the amplitude and excitation calibration factors 

and , respectively, where  is determined by an

amplitude calibration as described in [19] while  is

determined from measuring the oscillation amplitude in

resonance for a given excitation voltage Vexc. Assuming

Q0 = A/Aexc =  allows a straightforward

calculation of  from known parameters of a well-charac-

terised system. Note that by rewriting this formula to

, we can fully describe Hac without per-

forming an amplitude calibration measurement. The characteris-

tics of the loop are defined by two parameters, the gain PA and

the integral cutoff IA. Assuming that the cantilever is a system

of first order, the integral cutoff IA can be chosen to f0/Q0 to

avoid loop instabilities [25]. Therefore, the formula is written

directly in terms of the integral cutoff and not using the integral

loop gain I = IAPAπ.

The frequency response of the cantilever follows from the

response of a damped harmonic oscillator

(19)

with the quality factor Q0 and the eigenfrequency ω0 = 2πf0.

This function can be re-written with the modulation frequency

ωm as the argument by substituting ω = ω0 + ωm and can for

 be approximated [9] to

(20)
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Note that Equation 20 is phase shifted by π/2 relative to Equa-

tion 19 [12]. Following procedures outlined in appendix B and

Figure 2, the frequency response of the closed amplitude control

loop is given as

(21)

with the frequency response of the amplitude controller Hac (see

Equation 18), the frequency response of the cantilever Hc (see

Equation 20) and the frequency response of the loop filter Hlp,

which is in our case a Butterworth filter of 3rd order [28] with

cutoff frequency fc

(22)

To quantitatively evaluate HA, we first note that Hc is fully

defined by the two cantilever parameters f0 and Q0. These can

easily be determined in absence of tip–sample interaction [14].

By adding the response functions of the loop filter and ampli-

tude controller according to Equation 21, we calculate the fre-

quency response of the amplitude control loop illustrated in

Figure 10a for different proportional gain values PA. Figure 10b

shows the corresponding step response in time space, which is

calculated by applying the inverse Laplace transform [29] to the

product of the transfer function HA(s) with s = σ + iω and the

Laplace transform of the unit step function, 1/s. The result

 is numerically evaluated [30]. The

PLLpro2 system provides a feedback test by periodically

changing one parameter, here the amplitude set-point, by a

given magnitude, while recording the respective response with

time. The measurements are normalised to a step height of one

to be comparable to the calculated step responses. As shown in

panel (c), the calculations are in excellent agreement with the

measured step response. The response functions follow the ex-

pected behaviour: For small PA, the frequency response is a de-

creasing function of frequency and the step response a slowly

rising function in time (red curves). For large PA, gain peaking

appears in the frequency response and the step response exhib-

its ringing (blue curves). The optimum setting is represented by

the frequency response being flat over the low pass filter band-

width followed by a steep decrease. This corresponds to a

nearly rectangular step response with a certain rise time and a

small overshoot (green curves).

Figure 10: (a) Calculated gain and (b) calculated step response of the
amplitude control loop compared to (c) measured step response for
different loop gains PA. IA is kept fixed at 1 Hz. The loop filter Hlp has a
3rd-order Butterworth characteristics with a cutoff frequency of
fc = 500 Hz.

To optimise the amplitude control loop parameters, we first set

the integral cutoff IA of the amplitude controller to f0/Q0 [25].

To analyse the frequency response, we then start with a small

PA and increase this value stepwise until a certain threshold for

the gain peaking is reached, e.g., 0.1 dB. For the given set of

parameters, this response reflects the optimum settings.



Beilstein J. Nanotechnol. 2016, 7, 1885–1904.

1900

C.2 Frequency control loop
The frequency response of the PLL is given by (see Supple-

mental Information of [11])

(23)

with Hlp(iωm) being the frequency response of the low-pass

loop filter. Figure 11a illustrates the calculated gain of the PLL

using Equation 23 for different loop gain settings PPLL and a

3rd-order Butterworth filter (see Equation 22) with a cutoff fre-

quency of 500 Hz. We experimentally observe that the integral

cutoff IPLL has a minor influence on the frequency response

besides the presence of gain peaking for very small values. In

Figure 11b, the step response of Hfilter is calculated and com-

pared to the measured step response of the PLLpro2 system

shown in Figure 11c. Here, the inverse Laplace transform is

used to calculate the frequency shift 

and the PLLpro2 feedback test is experimentally performed by

periodically changing the phase setpoint within the PLLpro2

frequency control loop while logging the frequency shift signal.

For the closed frequency control loop, we find from Figure 2

and using procedures outlined in appendix B

(24)

By using Equation 20, we find Hc/Q0→0 for large Q0. As high

Q0 values are always desirable in experiments performed under

UHV conditions, this analysis suggests an optimisation proce-

dure for the frequency control loop solely based on the frequen-

cy response Hfilter of the PLL. This optimisation is possible

from calculating the gain before the cantilever is inserted into

the system if the system parameters f0 and Q0 are known. The

procedure can be performed similar to the optimisation of the

amplitude loop, by first setting the integral cutoff IPLL to f0/Q0

and then increasing PPLL until the threshold of 0.1 dB for gain

peaking is reached. Calculated and experimentally measured

frequency and step response functions are acquired as before in

case of the amplitude control loop and are presented in

Figure 11.

C.3 Distance control loop
The the z-distance controller is a general proportional–integral

regulator with frequency response

(25)

Figure 11: (a) Calculated gain and (b) calculated step response of the
PLL compared to (c) the measured step response for different loop
gains PPLL. IPLL is kept fixed at 1 Hz. The loop filter Hlp has a 3rd-order
Butterworth characteristics with a cutoff frequency of fc = 500 Hz.

The voltage output of the PLL and the signal input of the piezos

are both scaled in units of volts. To account for the correct unit

of the frequency response function, we include a calibration

factor SΔf (in units of Hz/V) for the PLL output and a calibra-

tion factor  (in units of nm/V) as z-piezo sensitivity.
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Figure 12: (a, b) Frequency response and (c, d) step response of the distance control loop for a given tip–sample interaction βts = 12.3 Hz/nm and
different settings of Pz and Iz. The calculations are performed using the ratio  = −0.312 nm/Hz and for PLL settings PPLL = −2.1 Hz/deg,
IPLL = 1 Hz with the loop filter Hlp having a 3rd-order Butterworth characteristics with a cutoff frequency of fc = 500 Hz.

The frequency response of the closed distance control loop is

determined from Figure 2 and using procedures outlined in

appendix B

(26)

with Hzc being the frequency response of the distance controller

(see Equation 25) and Hfilter being the frequency response of the

PLL (see Equation 23). Figure 12a,b illustrate the calculated

response of the distance control loop using Equation 26 for dif-

ferent settings of the proportional gain Pz and the integral gain

Iz. The corresponding calculated step response of the distance

control loop is shown in Figure 12c,d.

Figure 12 illustrates that a proper adjustment of the distance

controller parameters Pz and Iz is mandatory for stable and fast

operation. Compared to the previous loop discussions, a signifi-

cant complication added is the parameter βts, which strongly

depends on zp. Therefore, a configuration identified as the

optimum for a certain tip–sample distance is most likely obso-

lete for stronger or weaker tip–sample interaction and would

yield creep or overshoot in the step response.

For the optimisation of the distance control loop, a Δf(zp) curve

should be obtained first and the slope of the Δf(zp) curve at the

desired working point (βts = 12.3 Hz/nm, see Figure 4) should

be used to simulate the frequency response of the distance

control loop. As shown in Figure 12a and Figure 12c, an

optimum for the lowest gain peaking could be found for

Pz = 0.18 (green curve). When changing the integral gain Iz (see

Figure 12b and Figure 12d), we start in this case from a strongly

damped response (red curve), pass the optimum (Iz = 200 Hz,

green curve) and arrive at a ringing behaviour (blue curve). The

optimum is characterised by acceptable overshoot. A fast step

response is obtained by reducing gain peaking while main-

taining a flat response at low frequencies. However, operating

on a slightly different position on the Δf(z) curve may strongly

change the frequency response of the distance control loop.

Therefore, it is advisable to plan with a safety buffer regarding

the choice of Pz and Iz values to be prepared for unexpected

changes of the tip–sample interaction.
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D Relation between αts and βts
The theory derived by Polesel-Maris et al. [12] describes the

impact of the tip–sample interaction on the measurement signal

noise by the two parameters αts and βts defined as

(27)

and

(28)

Here, zts denotes the z-position of the lower turning point of the

cantilever oscillation (see Figure 3). This position is related to

the piezo position zp and the oscillation amplitude Az by

(29)

Following an amplitude change of δA, the lower turning point

shifts to zp − δA while the centre of the oscillation zp remains

fixed. As a consequence of Equation 29, we find an identity for

the derivations with respect to zts and zp:

(30)

Using this identity and Equation 29, we rewrite Equation 27 and

Equation 28:

(31)

(32)

Thus, the parameter βts can be determined directly from the

slope of a known Δf(zp) curve as shown in Figure 4. Further-

more, Equation 31 can be rewritten into two terms

(33)

This representation explicitly presents the two effects of an

amplitude change on the frequency shift: First, the frequency

shift changes due to a different lower turning point (αts,1) and,

second, the change in Δf due to a change of the weighting func-

tion [21] in the Δf calculation (αts,2).

The first term is a measure of the slope of the Δf(zp) curve with

respect to the piezo position zp. It is identical to −βts. The

second term is a result from the convolution of the tip–sample

force interaction with a weighting function [21]. For large oscil-

lation amplitudes, a dependence  has been found,

allowing the definition of an amplitude-independent,

normalised frequency shift [21]. This second term becomes

negligible for large oscillation amplitudes Az.

We illustrate the latter point by using an analytic expression for

a Morse interaction force

(34)

for which the resulting frequency shift ΔfM can be calculated as

[31]

(35)

where In(z) is the modified Bessel function of the first kind.

Using this expression, parameters αts and βts are directly calcu-

lated as

(36)

(37)

(38)
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(39)

The statement αts,1 = −βts is directly evident from Equation 37

and Equation 39. To quantify the relation between αts,1 and

αts,2, we plot the ratio

(40)

as a function of the amplitude A and the lower turning point po-

sition zts in Figure 13 and using parameters for a Si–Si interac-

tion derived from theory [32], namely Eb = 2.273 eV,

κ = 12.76 nm−1 and σ = 0.2357 nm. Even at z-positions close to

the force minimum (zmin ≈ 0.3 nm) and for amplitudes A larger

than 5 nm, the parameter αts,2 is less than 5% of αts,1. Thus,

under these conditions, the approximation

(41)

is fully justified.

Figure 13: Ratio δα = −αts,2/αts,1 as a function of the z-position and the
amplitude. A Morse interaction using parameters from [32] and
f0 = 300 kHz, k = 35 N/m are used to model the tip–sample interaction.

Supporting Information
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