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Abstract
By performing density functional theory (DFT)-based calculations, the performance of α-silicene as oxidation-resistant coating on

Ag(111) surface is investigated. First of all, it is shown that the Ag(111) surface is quite reactive against O atoms and O2 molecules.

It is known that when single-layer silicene is formed on the Ag(111) surface, the 3 × 3-reconstructed phase, α-silicene, is the ground

state. Our investigation reveals that as a coating layer, α-silicene (i) strongly absorbs single O atoms and (ii) absorbs O2 molecules

by breaking the strong O–O bond. (iii) Even the hollow sites, which are found to be most favorable penetration path for oxygens,

serves as high-energy oxidation barrier, and (iv) α-silicene becomes more protective and less permeable in the presence of absorbed

O atom. It appears that single-layer silicene is a quite promising material for ultra-thin oxidation-protective coating applications.
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Introduction
Surface protection against degradation of a material due to a

reaction with its environment has attracted intensive attention of

researchers for decades. In order to prevent the loss of impor-

tant properties (such as conductivity, reflectivity, and mechani-

cal and thermal resistance) of a material, surface protection has

been vital nearly for all application areas. As a well-known

mechanism of electrochemical corrosion, the formation of rust

is an un-solicited reaction between a metal and oxygen. For that

reason, protection of surfaces from oxygen has become an im-

portant field. Although macroscale and microscale coatings

have been used intensively in surface protection for a long time

[1,2], two-dimensional (2D) materials have become new candi-

dates for nanoscale coatings for different material groups.

Therefore, coating mechanisms at the nanoscale take are of high

interest in nanotechnology, and new candidates for nanostruc-

tural protection are needed to be understood in detail.

Due to its extraordinary structural and electrical properties,

graphene as 2D material has garnered huge interest in nearly all

science branches [3,4]. Because of the high impermeability,

graphene has also been thought as a corrosion-protection barrier

[5-7]. Kirkland et al. investigated the electrochemical response
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Figure 1: (a) Side view of the Ag(111) supercell structure and (b) top view of the Ag(111) supercell structure with possible oxygen captured sites.
Definitions and oxygen binding energies of all sites are given in Table 1.

of graphene-coated metal surfaces and found that graphene

causes reduction in the corrosion rate [8]. In addition, Topsakal

et al. showed that graphene is a suitable coating material to

protect surfaces from oxidation by performing DFT-based

calculations [9]. Bulk forms of transition-metal dichalco-

genides (TMDs) are well-known coating materials, and the

respective 2D TMDs can be used as surface protection. In addi-

tion, MoS2 is one of the most widely used lubricant coating ma-

terial [10]. Theoretical and experimental studies have demon-

strated that single-layer MoS2 and single layer W(S/Se)2 can be

used as a protective nanocoating material [11-14].

One of the most challenging members of the 2D material family

is silicene [15-19], the silicon analogue of graphene. After theo-

retical prediction [18], silicene was synthesized [19] on a silver

surface in the 3 × 3-reconstructed α-form. Differing from

graphene, silicene exhibits low buckling in which atoms in the

different sub-lattices are shifted oppositely in the out-of-plane

direction. The buckled structure of silicene forms perfect sites

to capture oxygen atoms. It is known that silicon atoms tend to

bond oxygen atoms strongly and form various stable oxidized

silicon structures. Therefore, silicene can be a potential coating

material for protection at the nanoscale.

On the other hand, silver is being used in our daily life in jewel-

ry, silverware, decorative objects and electronics. Although the

oxidation of silver forms thin layer of Ag2O, which protects

from more oxygen diffusion into silver surface, it is an undesir-

able reaction. Previous studies have shown that oxidation of

silver surfaces leads to increase in work function, color change

and significant deterioration of surface quality [20,21]. For that

reason, coating of silver for protection to oxidation is needed.

In this study, we examined the coating performance of

α-silicene against oxidation on the most preferable substrate

metal for silicene, silver. In first step, we studied the adsorption

of an oxygen atom and an oxygen molecule on bare silver with

 growth direction because silicene has been synthesized on

Ag(111) substrates [19]. Then, the adsorption of the oxygen

atom/molecule on α-silicene over Ag(111) was investigated. It

was shown that α-silicene is quite reactive regarding oxidation.

In addition, we focused on oxidation scenario of silver in the

presence of α-silicene. A large energy barrier for oxidation was

obtained by performing indentation calculations. In conclusion,

it was found silicene exhibits good performance in the protec-

tion of a Ag(111) surface against oxidation.

Results and Discussion
Computational methodology
To obtain the preferable crystal structure of α-silicene on

Ag(111), four-layer Ag(111) composed of two fixed bottom

layers and two free upper layers, was prepared as supercell

structure with dimensions of 4 × 4 × 1. Thus, the surface of

silver successfully simulated with and without silicene on top of

Ag(111). First principles calculations were performed using the

Vienna ab initio simulation package (VASP) [22,23], which is

based on density functional theory. The projector-augmented

wave (PAW) [24,25] formalism was used in the calculations.

For the exchange–correlation energy, the generalized gradient

approximation of the Perdew–Burke–Ernzerhof (GGA-PBE)

[26] functional was used in conjunction with a semi-empirical

scheme for including van der Waals (vdW) interaction disper-

sive forces developed by Grimme [27]. The structural relaxa-

tions were performed with a plane wave cut-off energy of at

500 eV. A 3 × 3 × 1 k-point mesh was used for the structural re-

laxation. The criterion of convergence of energy was chosen as

10−5 eV between two ionic steps, and the maximum force

allowed on each atom is 0.1 meV/Å. At least 13 Å of vacuum

were applied along z-direction to hinder interactions between

the adjacent cells.

Oxidation of the bare Ag surface
Because the buckled structure of silicene grows sleekly on a

silver surface, one may expect unique and enhanced coating
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Figure 3: (a) Side view of the silicene-coated Ag(111) supercell structure and (b) top view of the silicene-coated Ag(111) supercell structure with
possible oxygen-capture sites. Definitions and oxygen binding energies of all sites are given in Table 1.

Figure 2: Top view of Ag(111) geometric structures after capturing an
oxygen atom and an O2 molecule. (a) hcp hollow site and (b) fcc
hollow site for oxygen, (c) magnetic and (d) nonmagnetic O2 molecule
adsorption on Ag(111). The insets in panel (c) and panel (d) show the
bonding characteristics of O2 molecule.

performance against oxidation. As shown in Figure 1, we first

investigate how strongly an oxygen atom and an oxygen mole-

cule interact with possible sites on the Ag(111) surface. Two

sites were found to be preferable locations for oxygen atoms on

the Ag(111) surface, the hcp and fcc hollow sites. These sites

are shown in Figure 1b.

Figure 2a and Figure 2b show how an oxygen atom is adsorbed

at the silver surface at the hcp and fcc hollow sites, respectively.

The binding energy of single oxygen on the Ag(111) surface is

about 3.9 eV. The energy difference between sites is only

110 meV. It is seen that silver surface strongly captures single

oxygen atoms. Oxygen in fcc site forms a bond distance with

neighbor silver atoms of about 2.14 Å. The presence of oxygen

causes a distortion of about 9.8% and pushes neighbor atoms in

this site. Although oxygen at a hcp site has the same bond dis-

tance with neighbor atoms as at the fcc site, the presence of

oxygen causes distortion of about 8.9% at the hcp site. It

appears that, absence of the lower silver atom at the fcc site

results in a deeper penetration of the oxygen atom than at the

hcp site.

Compared to a single oxygen atom, the O2 molecule behaves

differently on a bare silver surface. Figure 2c and Figure 2d)

show how the O2 molecule interacts with the silver surface.

Magnetic and nonmagnetic states of O2 molecule are observed

while oxygen is captured at the silver surface. In the magnetic

state, only one of the oxygens come closer to the surface. In the

other case, both oxygen atoms come closer to the surface. In

both cases, the binding energies are ca. 200 meV. Therefore, it

is seen that O2 molecule tends to bind to the silver surface. In

the magnetic state, the oxygen–oxygen distance is around

1.26 Å, which is close to oxygen–oxygen distance in an oxygen

molecule in the vacuum state. In the nonmagnetic state, the

oxygen–oxygen distance is around 1.41 Å. The silver surface

weakens the oxygen–oxygen bond in the nonmagnetic system.

In addition, the distance between oxygen and silver is nearly the

same as the distance between a single oxygen atom and silver

distance, which is 2.14 Å. Similar to adsorption of a single

atom, the oxygen molecule distorts silver surface at that site.

Therefore, the oxygen–oxygen bond can be broken through a

thermally induced process and the silver surface can exhibit

oxygen atoms.

Oxidation of the silicene-coated Ag surface
In this section, the silicene-coated Ag(111) surface is investigat-

ed. We consider the experimentally realized structure of silicene

on Ag(111), α-silicene [19]. Albeit with a different notation, it

was also shown that α-silicene is the thermodynamically favor-

able phase under a wide range of conditions [17]. Differing

from the theoretical predicted simply buckled silicene,

α-silicene has a 3 × 3-reconstruction in which six silicon atoms

form a sub-layer over the other twelve silicon atoms in the

supercell as shown in Figure 3. Blue and turquoise atoms repre-
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Table 1: Binding energies of O/O2 on Ag(111) and silicene-coated Ag(111). Ag refers to the Ag(111) surface, Si/Ag refers to silicene-coated Ag.

system site name binding energy (eV) ΔBE (meV)

O@Ag fcc cubic close-packed hollow site 3.90 —
hcp hexagonal close-packed hollow site 3.79 110

O@Si/Ag H1 site between six lower silicon atoms 6.45 70
T1 top site of upper silicon atom 5.78 740
H2 site between three upper and three lower silicon atoms 6.00 520
T2 top site between two lower silicon atoms 6.27 250
T3 top site between one upper and one lower silicon atom 6.52 —
H3 site between four lower and two upper silicon atoms 5.84 680

O2@Ag mag magnetic O2 molecule on the surface 0.21 —
n-mag non-magnetic O2 molecule on the surface 0.19 20

O2@Si/Ag in-S O2 molecule inside silicene 6.70 —
top-S O2 molecule on top of silicene 2.06 4640

Figure 4: Final configurations of silicene-coated Ag(111) after capturing an oxygen atom at the sites (a) H1, (b) T1, (c) H2, (d) T2, (e) T3 and (f) H3.
Final configurations (g) in-S and (h) top-S of silicene-coated Ag(111) after capturing an O2 molecule.

sent the lower and upper Si atoms respectively. In the presence

of silicene, the interlayer distance of the uppermost Ag layers

are slightly changing and the distance between Ag surface and

silicene is found to be ca. 2.15 Å.

In Figure 3b, possible sites for oxygen on silicene-coated

Ag(111) are demonstrated. There are six possible sites due to

symmetry in silicene-coated Ag(111). These sites are named ac-

cording to hollow and top sites of neighboring silicon atoms in

the buckled silicene structure. Hxs are for hollow sites, Txs are

for top sites. The definition of sites can be found in Table 1 in

detail. These six possible sites reflect all possible final configu-

rations in the system. Table 1 shows the oxygen binding energy

of all possible sites for silicene-coated Ag(111).

Silicene captures oxygen with a binding energy range of

5.8–6.5 eV. Compared to silver, silicene has a higher tendency

to bind to oxygen. Figure 4 shows the oxygen–silicene bonding

characteristics when the system reaches its local lowest energy.

The least preferable sites for oxygen on silicene-coated Ag(111)

are the sites where the highest distortion occurs and where

oxygen has a low interaction with silicon atoms, namely H2, H3

and T1. On the other hand, the sites with the lowest distortion

are the most preferable sites for oxygen on silicene-coated

Ag(111), namely T2, H1 and T3 in the order from the lowest to

the highest binding energy. The final configurations of T2 and

H1 with oxygen presence seem to be equivalent. Oxygen binds

to a lower silicon atoms, but the difference lies in the fact that

the upper silicon atoms in T2 allow for more freedom and

oxygen can take a position between them. Whereas, six lower

silicon atoms tend to retain their hexagonal configuration and

the oxygen atom finds itself in an upper-site position between

two silicon atoms. The absence of a silicon–silicon bond in the

T2 configuration results in a difference of 180 meV. The highest
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binding energy is calculated for T3 site. In this configuration,

the oxygen atom enters a top-site position between upper and a

lower silicon atoms. In this position, the lowest distortion

occurs in the system so that oxygen binds with a high energy

and leads to formation of an energetically favorable final con-

figuration.

In the case of the O2 molecule, there are two final configura-

tions, “in-S” and “top-S”, to be formed at the most favorable

oxygen-capture sites. Figure 4g and Figure 4h show the in-S

and top-S configurations, respectively. It is shown that silicon

and oxygen strongly interact with each other (Table 1). SiO2 is

one of the most stable compounds in nature. Therefore, silicon

tends to bind two oxygen atoms in the form of SiO2 as depicted

in Figure 4h. However, the energetically favorable configura-

tion is the one in which oxygen atoms take separate positions

between the silicon atoms (Figure 4g). In contrast to the other

configuration, the silicon atoms in silicene can pluck the O2

molecule and are allowed to diffuse in the system. This

promises a good oxidation barrier for the silver surface.

Oxidation of the Ag surface in the presence
of silicene coating
To investigate the application of silicene as an oxidation barrier,

indentation calculations with oxygen were performed. Since O

atoms and O2 molecules strongly interact with silicene, the

diffusion of O/O2 in the lateral direction is not possible and the

hollow sites of the hexagonal lattice are the only possible sites

for the penetration into the structure. Therefore, the hollow sites

are considered for the indentation simulation. There are four

different hollow sites in the silicene structure on Ag(111), as

shown in Figure 3b. The sites are denoted as H1, H2, H2’ and

H3. H2 and H2’ sites coincide to the fcc and hcp sites of the

Ag(111) surface, respectively.

For the indentation calculations, a single oxygen atom is placed

in the middle of a hollow site. Calculations are performed as

follows: First, the oxygen atom is kept at a distance of about

10 Å from the Ag surface (ca. 8 Å to the silicene surface) and is

approached to the surface in 1.0 Å steps. When the oxygen

atom interacts with silicene, the step size is reduced to 0.5 Å. In

Figure 5, the change of the total energy as a function of the

vertical distance between oxygen atom and Ag surface is given

for the different hollow sites. The barrier energies (Ebr), which

are defined as the amount of energy needed for an oxygen atom

to pass through a hollow site, are also shown in Figure 5. From

lowest to highest, the values of Ebr for H1, H2, H2’ and H3 are

found to be 1.66, 1.82, 1.85 and 1.99 eV, respectively. The H3

hollow site has the highest energy barrier among all sites. At

first, a fixed single oxygen atom attracts two upper silicon

atoms to form one of the highly stable configurations. For that

reason, the lowest ground-state energy occurs in this hollow

site. While the single oxygen atom approaches the Ag surface, a

barrier occurs up to ca. 2.5 Å where oxygen passes through

hollow site exactly from upper site of silicene to the lower site

of silicene. As seen in Figure 5, this also happens at the H2, H2’

and H3 hollow sites. H2 and H2’ are similar hollow sites. There

is a small difference, ca. 30 meV, in energy barrier at these

hollow sites. The lowest energy barrier, 1.66 eV, is seen in the

H1 hollow site. Due to the planar structure of the silicon atoms

at the H1 site, it is the most suitable hollow site for an oxygen

atom to pass through silicene. Since the H1 hollow site has the

lowest barrier energy, the side view of the structure for differ-

ent distances is shown in the inset of Figure 5. At about 5 Å, the

single oxygen atom pulls and binds one of the lower silicon

atoms. Because further penetration of oxygen is not favorable at

that distance from the Ag surface, a small local minimum

occurs. Then, the other lower silicon atom binds the oxygen and

the energy is lowered further. Due to the larger void size in the

H1 hollow site than in the other hollow sites, it is easy to pass

for the oxygen atom from the upper surface of silicene to the

lower surface. At a distance of around 2.0 Å, the barrier has a

different value than at the other hollow sites, because of the

planar formation of the lower silicon atoms and also because of

the larger void of the H1 hollow site.

Figure 5: Indentation of an oxygen atom at different hollow sites. Ebr is
the energy barrier the oxygen atom needs to pass inside the silicene
environment. Inset graph shows the oxygen progression in H1.
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Figure 6: Indentation calculations for an O2 molecule. Inset graphs
show structures according to local-minimum states of O2, before and
after reaching the global minimum state of the system.

H1 is more permeable for oxygen atoms than other hollow sites.

Hence, the indentation calculations for the O2 molecule are per-

formed at the H1 site. One oxygen atom of the O2 molecule is

fixed, the other non-restricted oxygen follows the fixed oxygen

naturally. The oxygen molecule is moved closer to the Ag sur-

face step by step from a distance of 10 Å via the fixed oxygen

atom. The indentation process is shown with a small step size

after the oxygen atom is captured by a silicon atom (Figure 6).

There is a local-minimum state in which oxygen is still in the

molecule form (see inset graphs in Figure 6), far from the Ag

surface at a distance of about 4.5 Å. While the indentation of

the O2 molecule continues, the energy increases up to some

point. At distances below 3.8 Å, a sudden decrease in energy is

seen. The inset graphs in Figure 6 show that the deterioration of

the O2 molecule happens due to a strong interaction between

oxygen and silicon atoms and after that silicene-coated silver

system reaches a global-minimum state. The figure shows that

the dissociation of the oxygen molecule is favorable and

requires ca. 300 meV to exceed the energy barrier of transition.

Since the H1 hollow site is the most permeable site, the

maximum value of the transition energy barrier converges to ca.

300 meV. Two possible configurations, in-S and top-S

(Figure 4g,h), are observed. The difference of those two

minimum-energy states is similar (Table 1). In addition,

oxidized silicene does not allow for a further indentation of a

single oxygen atom. The locally forming silicon oxide structure

attracts oxygen atoms more strongly. A local-minimum state as

in FigureFigure 5 is not found between silicene and the Ag sur-

face. Therefore, silicene becomes less permeable and more

protective with increasing number of oxygen atoms. Our find-

ings are consistent with the recent studies of oxidized silicene

[28,29], which observed non-oxidized metal surfaces after the

oxidation of silicene on metal substrates. One may claim that

silicene retains its extreme reactivity to oxygen atoms even after

forming localized silicon-oxide structures. As a result, silicene

has great potential to capture unwanted atoms and to protect the

metal surface.

Conclusions
In this study, we performed first principles calculations to in-

vestigate the oxidation properties of α-silicene as a coating ma-

terial on Ag(111). It was found that an O2 molecule interact

with the Ag surface with a low binding energy, while a single

oxygen atom interact strongly with the surface. The silicene

coating on Ag surface was demonstrated as protective material

from oxidation. In particular, large binding energies between a

single oxygen atom and silicene were calculated for the possible

adsorption sites. This strong interaction can break the

oxygen–oxygen bond as well. Moreover, the energy barriers for

the oxygen atom between silicene and Ag surface are quite high

and sufficient for the protection of the metal surface. Indenta-

tion calculations of the O2 molecule showed that the molecule

dissociates in the vicinity of silicene. It is also seen that an

increase in oxygen atoms makes silicene more protective and

silicene does not allow oxygen to pass to the metal surface. In

conclusion, silicene has been proven itself as oxidation-resis-

tant nanocoating material.
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