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Abstract
We present a new universal method to accelerate calculations of transmission function and electrical conductance of 2D materials,

the supercell of which may contain hundreds or thousands of atoms. The verification of the proposed method is carried out by

exemplarily calculating the electrical characteristics of graphene and graphane films. For the first time, we calculated the transmis-

sion function and electrical conductance of pillared graphene, composite film of carbon nanotubes (CNTs)/graphene. The electrical

conductance of different models of this material was calculated in two mutually perpendicular directions. Regularities in resistance

values were found.
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Introduction
The development of technologies for the synthesis of graphene

nanomaterials has led to an expansion of the scope of their ap-

plication. One of the graphene composites that have been

actively studied in the last few years is pillared graphene [1]. It

is a graphene layer, connected seamlessly by single-walled car-

bon nanotubes (SWCNTs). One of the advantages of this mate-

rial is its high strength and resistance to mechanical stress [2-4].

In combination with high electrical capacity and efficient elec-

tronic transfer between graphene sheets, this nanomaterial has

already been recognized as promising as an electrode for

storage batteries and supercapacitors [5-7]. There remain many

questions about the conductive properties of pillared graphene

and their dependence on the length and diameter of the nano-

tubes. At the moment, there is no experimental data on the

conductivity of pillared graphene, so the theoretical prediction

of the transmission regularities in this material is relevant. How-

ever, the calculation of the electrical conductance of pillared

graphene by quantum mechanical methods is difficult due to its
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large supercell. These calculations require too much time, even

when using modern computing tools.

The non-equilibrium Green function (NEGF) method with den-

sity functional tight-binding (DFTB) scheme or density func-

tional theory (DFT) scheme is used to calculate the electrical

conductance of molecular structures consisting of atoms of

various elements with high accuracy [8]. Within the NEGF

formalism, each system represents left and right electrodes and

the molecules between them. The probability that an electron

will transmit from the left to the right electrode is described by

the transmission function T(E). The dependence of the transmis-

sion function on the energy of the electron in the system is char-

acteristic for each point of the reciprocal lattice. The final form

of T(E) depends on the number of k-points in the reciprocal

lattice, because T(E) average over these lattice points. Using the

convergent transmission function it is possible to find the elec-

trical conductance of the nanostructure. However, in order to

obtain a converged form of the averaged transmission function,

it may be necessary to calculate it in a set of points in the recip-

rocal lattice, which is unattainable for a large number of atoms

in the considered system. In this connection, the development of

methods for accelerating the calculation of the transmission

function without a significant loss in the accuracy of calcula-

tions has particular relevance and significance for research of

the electrical conductive properties of new composite materials.

At present, such accelerating techniques are practically absent.

We found only one work [9] in which the authors attempted to

propose an algorithm that accelerates the calculations of the

transmission function of large systems. However, the solution

proposed in above mentioned paper did not significantly

increase the computational speed, which is especially critical at

considering new carbon composite materials such as pillared

graphene and other varieties of graphene–nanotube structures.

The purpose of this work is to propose an alternative approach

to the calculation of transmission function and electrical

conductance of composite nanomaterials, which allows us to in-

vestigate the electrophysical properties of atomic structures

with hundreds and thousands of atoms in the supercell. The

verification of the proposed approach is carried out by the ex-

ample of calculations of the transmission function and elec-

trical conductance of perspective 2D carbon materials, namely

graphene, graphane and a graphene–carbon nanotube hybrid

composite.

Computational Details
In order to calculate the electrical conductance we use the

Green–Keldysh functions and the Landauer–Büttiker formalism

[8]. The calculation of energy and band structure is carried out

by the DFT method in the tight-binding approximation [10-12]

within the Kvazar software package [13]; the parametrization

pbc-0-3 was used [14-16]. The electrical conductance is de-

scribed by the expression:

(1)

where T(E) is the transmission function characterizing the quan-

tum mechanical transparency of the conducting channel as a

function of the energy of the electron moving along it, μ is the

Fermi energy of the electrode, e is the charge of the electron,

and h is the Planck constant. The thermal broadening function

FT(E) is calculated by the formula:

(2)

where kB is the Boltzmann constant, and T is the temperature.

The transmission function is given by:

(3)

where  and  are, respectively, the advanced and

retarded Green matrices (describing the contact with the elec-

trodes), ΓS(E) and ΓD(E) are, respectively, the level broadening

matrices for source and drain. The function T(E) is found by

summation over the entire Brillouin zone (BZ) and N is the

number of points in the reciprocal space. The accuracy of calcu-

lating T(E) is determined by the segmentation of the reciprocal

space and the considered number of energies values. The calcu-

lation will be reliable when the function T(E) does not change

with decreasing pitch of the change in the wave number k. For

example, for finitely segmented BZ with limits a and b, the

function T(E) converges to its true form for N ≥ 103. For materi-

als in which the cell contains of the order of several hundreds or

thousands of atoms, the calculation of T(E) at a single point (for

a fixed k) takes a rather long time, thus making 103 calculations

impossible. For example, for a 2D crystal cell with 472 atoms,

the calculation of the transmission function averaged over 288

points of the reciprocal space takes almost four days for the

parallel calculation in 24 processes (Intel® Xeon® CPU

E5-2660 v2 with a frequency of 2.2 GHz). If the BZ is not a

segment, but a 2D or 3D figure, the number N increases by

orders of magnitude. In the next section, a method will be de-

scribed to reduce the number of reciprocal space points and

energy values for which a transmission function calculation is

required, without substantially losing accuracy of the shape of

T(E).
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Figure 1: Graphene: a) unit cell with electrodes; b) transmission function (green: dk = 0.1 1/Å, blue: dk = 0.0015 1/Å).

Figure 2: Transmission function: a) Т(Е) for three different ky; b) the distribution of points of the transmission function for different energies and quan-
tities ky for a fixed value of Т(Е) = 2.

Results and Discussion
Description and verification of the method for
accelerating transmission-function
calculations
Let us demonstrate the proposed method for calculating T(E)

for two different N by using the example of a graphene mono-

layer. Figure la shows the considered system, that is, the unit

cell connected to the electrodes. Since we calculated the

conductance of this material (graphene), the same cells act as

electrodes. Electrodes are translated to infinity along the

Y-direction, and they are semi-infinite along X. The central cell

is also translated to infinity over Y. Thus, the wave number ky

varies within (−π/ay; π/ay), where ay is the unit cell size along

the Y-direction (as shown in Figure 1a, the software VMD [17]

was used for visualization). The calculated functions T(E) from

Equations 1–3 with different values of N are shown in

Figure 1b. For a small step of the decomposition dk = 0.1 1/Å

(N = 15), the function has a step-like form. When the step of the

decomposition is reduced to dk = 0.0015 1/Å (N = 984), the

curve takes the correct well-known form for a graphene mono-

layer. The transmission function is represented in conductance

quanta e2/h.

For each point of the reciprocal lattice, the calculated T(E) func-

tion is additionally processed. The values of T(E) near the tran-

sition area between the steps are refined to make them more

abrupt. In many cases, this procedure allows us to eliminate the

need for a more detailed decomposition of the energy interval.

For this, within transmission-function calculations we used an

interval-halving technique, which allows one to obtain a

16-times more accurate boundary value between the steps for

four iterations. Each iteration reduces the difference between

the energies E1 and E2 by a factor of two (E1 is the last energy

value for a certain k-point at which T = T(E1), E2 is the first

energy value for the same k-point at which T = T(E2) and T(E2)

≠ T(E1)), since the value of the transmission function at the

midpoint E3 = 0.5(E1 + E2), which is either T(E1) or T(E2),

is determined. Then, the interval (E1, E3) is considered if

T(E3) = T(E2), or the interval (E3, E2) if T(E3) = T(E1). There-

fore, four similar iterations yield a 16-fold reduction of the

energy difference between two adjacent steps of the transmis-

sion function.

To eliminate the step-like form of the averaged transmission

function, we interpolate the function T(E) between two neigh-

bouring points of the reciprocal lattice. Figure 2a shows step

plots of T(E) for three different numbers ky. In general, indepen-

dently of ky, interpolation for each point of the polygonal chain

determines the nearest points with energy having the same

value of the function T(E) and belonging to the neighbouring

polyline. The picture of the distribution of points in this case
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Figure 3: Graphene transmission function: a) a map of T(E) for the initial partitioning over ky (from above) and after applying the interpolating function
Т1(Е, ky); b) a map of T(E) after applying the interpolating function Т2(Е, ky); c) averaged T(E) over all ky (green: interpolated, red: converged).

has the form shown in Figure 2b, when one value of T(E) = 2 is

fixed. Thus, all the points of neighbouring polygonal lines

having the same value of T(E) are first found, and then the

nearest ones are selected from the energy difference. If a poly-

line has two adjacent lines, then each point of this polyline can

have no more than one near point on each of them. Similarly, in

the case of a single neighbouring polyline, there will not be

more than one near point for each point on the polygonal chain.

If the difference in the values of the transmission function

exceeds one, additional points are added. For example, if for

some value of ky the transmission function undergoes a jump on

passing from a point with energy Ei to a point with energy Ei+1,

with Ti+1 − Ti = 2, then an additional point will be added to this

polygonal chain. This point is characterized by an energy value

of 0.5 (Ei+1 + Ei) and the transmission function at this point is

equal to Ti +1. This is necessary in order to find the nearest

point with the value of the transmission function Ti + 1.

Next, the nearest points found are used to add additional points

between them, lying on the segment connecting these points.

All additional points have the same value of T(E) as the nearest

points. The number of points added depends on the length of the

segment connecting the nearest points on different polygonal

chains. The longer the lengths of the segment, the more addi-

tional points are added. If an additional point has not been used

to form the connecting segment, it is not used to construct an

interpolating function. The starting points and the remaining

added points are used to construct the interpolating function.

The interpolating two-dimensional function T1(E, ky) makes it

possible to realize a detailed decomposition over ky values,

ensuring smoothing of the initial roughness. Figure 3a shows

maps of the transmission function T(E): Figure 3a, top – before

the interpolation procedure (there are additional points obtained

by interval-halving technique); Figure 3a, bottom – after

applying the constructed interpolating function T1(E, ky). The

step-like behaviour of the function T(E) has disappeared every-

where, except for the region near the Fermi level (0.0 eV here).

Indeed, there may exist “special regions” for which the original

partitioning by ky was too coarse. Special regions are deter-

mined by the researcher in the gradient of the image. Areas of

smooth colour change indicate the lack of partitioning for this
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Figure 4: Graphane transmission function: a) a map of T(E) for the initial partitioning over ky (top) and (bottom) after applying the interpolating func-
tion Т(Е, ky); b) averaged T(E) over all ky (blue: interpolated, red: converged).

area. Calculations with a more particular partition are addition-

ally carried out for this area, but already in a narrow range of

values: from 0 to 0.2 1/Å for ky, and from −0.3 to 0.3 eV for E.

The next step is the construction of a new interpolating func-

tion T2(E, ky). Figure 3b shows the map of the transmission

function after applying T2(E, ky), Figure 3c show the function

T(E) averaged over all ky. The solid curve shows the calcula-

tion with the distance between two neighbouring points in reci-

procal lattice of 0.0015 1/Å, the dotted line shows the result of

applying the developed method. The norm of the difference be-

tween the interpolated and the converged values is 0.68%. Time

taken to obtain the average transmission function (with parallel

calculation using eight processes on the Intel Xeon CPU

E5-2690 v4 CPU with a frequency of 2.6 GHz) varies:

34 minutes, 2 seconds per accurate calculation and 2 minutes,

22 seconds to obtain the final values of the interpolated graph.

Note that, in general, the time taken to add points depends on

the amount of input data, and not on the number of atoms in the

considered structure.

The proposed method for calculating the transmission function

was also tested with the example of graphane. Figure 4 present

the results of the study of a graphane fragment using the pro-

posed method. The number of points for accurate calculation is

720, for the rough approximation it is 24. The calculation times

for the transmission function (for parallel calculation using

eight processes on the Intel Xeon E5-2690 v4 CPU with a fre-

quency of 2.6 GHz) for accurate calculation and interpolation

are 146 minutes, 29 seconds and 7 minutes, 21 seconds, respec-

tively. The norm of the difference between the interpolated

values and the ones obtained from the direct calculation is

1.79%.

The results of solving the test problems show that the transmis-

sion function calculations were accelerated by factor of 14.38

for graphene and of 19.92 for graphane by using the method de-

veloped here. Nevertheless, the speed of calculations is limited

by the complexity of the dependence of the transmission func-

tion on energy and the considered point of the reciprocal lattice.

The higher the rate of change in the transmission function, the

more detailed calculations are needed.

The accuracy of the results of the transmission function calcula-

tions obtained using the proposed method depends on the size

of the unit cell and the chosen reciprocal lattice vector k. The

test problems solved for graphene and graphane show that the
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Figure 5: 2D composite of pillared graphene based on CNT (9,9) with a length of 2.4 nm: a) atomic structure; b) schematic representation of the cell
of the composite and electrodes in the case of electron transport along X (left) and Y (right); c) transmission functions along the X- (left) and Y- (right)
directions.

discrepancy between the values of the transmission function

calculated without the developed method and with its applica-

tion was about 1–2%.

Transmission function and conductance of
2D graphene/CNT composites
Using the developed method for calculating the transmission

function we investigated the transmission functions and elec-

trical conductance of 2D graphene/CNT composites. The inves-

tigated film was modelled by two layers of graphene connected

by single-layer armchair tubes (9,9) with a diameter of 1.23 nm

(tubes of diameter 1–1.5 nm are typical for such composite ma-

terials). The distance between the tubes was equal to 2.1 nm, the

length of the tubes (i.e., the distance between the layers of

graphene) ranged from 1.1 to 2.4 nm. The graphene sheet had a

length of 2.45 nm along the X-axis and 2.13 nm along the Y-axis

for each unit cell. Figure 5a shows the atomic structure of a

pillared graphene film with an inter-tube distance of 2.1 nm.

The tubes are connected seamlessly with graphene, i.e., the

CNT smoothly passes into the graphene sheet, and the junction

contains not only hexagons, but also defects in the form of

pentagons, heptagons and octagons. In order to calculate the

electrical conductance in the X- and Y-directions, as in the case

of the graphene monolayer, a central supercell and supercell

electrodes are separated (see Figure 5b). The conductance

calculation scheme corresponds to the electronic transport along

X (along the zigzag edge) in the left figure, and along Y (along

the armchair edge) in the right figure. In this case the supercell

consists of 580 atoms with a distance between the graphene

layers of 2.4 nm. The conductance was calculated using the de-

veloped method because of the large number of atoms. The

plots of the function T(E) averaged over all k in the case of elec-

tron transport in the X-and Y-directions are shown in Figure 5c.

Similarly, the transmission functions T(E) were calculated for

all models of supercells of a composite on the basis of CNT
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Table 1: Data of investigated single-layer composite films and the results of modelling.

length of the tube, nm number of atoms in the
supercell of the composite

direction of
translation

Fermi energy, eV conductivity, μS resistance, kΩ

0.60 400 X −4.74 135.93 7.35
Y 11.03 90.65

0.85 436 X −4.88 32.48 30.79
Y 8.32 120.12

1.10 472 X −4.85 92.21 10.85
Y 24.89 40.18

1.34 508 X −4.73 142.96 6.99
Y 10.41 96.05

1.59 544 X −4.85 72.26 13.65
Y 13.19 75.78

1.84 580 X −4.81 122.08 8.19
Y 19.8 50.5

(9,9) at the same distance between tubes of 2.1 nm. The conduc-

tance and resistance of the pillared graphene film were calcu-

lated based on the calculated T(E). Table 1 shows the corre-

sponding data: tube length, number of atoms in the transmitted

cell, calculated Fermi level, conductance and resistance. The

Fermi level is in the interval (−4.88 eV; −4.73 eV), that is, it is

shifted downward compared to ideal CNTs of the same diame-

ter (−4.66 eV). Conductance and resistance behave non-monot-

onically. It can be said that the resistance oscillates around a

value of 12 kΩ in the Y-direction for single-layer composites,

and around a value of 90 kΩ in the X-direction only with larger

amplitude.

Similar investigations were carried out for two-layer pillared

graphene (Figure 6). The graphene sheet length was 4.8 nm

along the X-axis and 4.12 nm along the Y-axis for each unit cell.

The resistance for two-layer composites averages 10.2 kΩ in the

Y-direction and 29.32 kΩ in the X-direction. The difference be-

tween the resistance in the X- and Y-directions is significantly

lower for two-layer composite in comparison with single-layer

composite. The conductivity in the Y-direction has increased for

all the considered situations (see Table 2), while the conduc-

tance value decreased in the X-direction for a composite with

nanotube lengths of 1.1 and 1.84 nm.

A comparison of the plots of the transmission functions for

single-layer and two-layer composite is shown in Figure 7.

Based on obtained results, we can conclude that for the single-

layer pillared graphene film, the resistance in the direction of

the Y-axis (zigzag edge of the graphene sheet) varies insignifi-

cantly and does not depend on the distance between the

graphene layers. For a two-layer composite, the average resis-

tance depends on the axis direction. This can be explained by

the high electrical conductance of graphene nanostructures with

a zigzag edge. The conductance of these ribbons does not

depend on the width of the ribbon and weakly depends on its

topology. In the direction of the X-axis (armchair edge of

graphene sheet), the electrical conductance of single- and two-

layer composites depends significantly on the topology of the

film. The resistance changes drastically with the increase in the

CNT length.

Conclusion
We created a new universal method for calculating the electron-

transmission function and electrical conductance at quantum

transport in composite nanomaterials. This method allows us to

investigate the electrophysical properties of atomic structures,

which contain hundreds and thousands of atoms in the trans-

mitted supercell. By the example of monolayer graphene and

graphane it was shown that the developed method significantly

reduces the calculation time of the transmission function. The

error of the calculation was equal to 0.68% and 1.79% for

graphene and graphane, respectively. A number of competitive

advantages of the proposed approach compared to other

methods in the literature are: Our approach does not use the

Dijkstra method used in [9]. There is no need to construct a dis-

tance matrix and to find the shortest path in the plot. Also, the

program implementation of our approach is simpler. Besides,

our approach ensures a higher acceleration rate in calculations

of the transmission functions of polyatomic structures. In partic-

ular, by the example of the graphene fragment, it was shown

that the calculation speed of transmission function using our ap-

proach is three times higher than the calculation speed in the

method proposed in [9]. Also, we introduce an additional part in

the runtime of calculations, not only at the post-processing

stage. The limitations of our method are that a too coarse



Beilstein J. Nanotechnol. 2018, 9, 1254–1262.

1261

Figure 6: Two-layer 2D composite of pillared graphene based on CNT (9,9) with a length of 2.4 nm: a) atomic structure; b) schematic representation
of the cell of the composite and electrodes in electronic transport along X (left) and along Y (right); c) transmission functions along the X- (left) and Y-
(right) directions.

Table 2: Data of investigated two-layer composite films and the results of modeling.

length of the tube, nm number of atoms in the
supercell of the composite

direction of
translation

Fermi energy, eV conductance, μS resistance, kΩ

0.60 2400 X −4.712 141.26 7.08
Y 41.66 24.00

1.10 2544 X −4.798 84.82 11.79
Y 30.30 33.00

1.84 2760 X −4.781 86.06 11.62
Y 32.31 30.95

k-point sampling or a too coarse energy sampling will lead

unrealistic results, in spite of any post-processing scheme.

Using developed method we obtained new knowledge about the

electrical conductive properties of a new composite material,

namely pillared graphene. The calculated electrical conduc-

tance and resistance of the pillared graphene film showed that

the current flow is more preferable along the zigzag edge of the

graphene sheet both for single-layer and two-layer composites.

The average resistance value in this direction was 12 kΩ for the

single-layer composite. This value is close to the resistance

value of an ideal nanotube. For the two-layer composite, the av-

erage resistance was 10.2–29.3 kΩ depending on the direction.

This can be explained by the high electrical conductance of

graphene nanostructures with a zigzag edge. The conductance

of these ribbons does not depend on the width of the ribbon and
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Figure 7: Plots of the transmission functions for two-layer (blue) and
single-layer (red) composites (the tube length in the composite was
equal to 1.84 nm): a) in the direction of the X-axis, along the zigzag
edge; b) in the direction of the Y-axis, along the armchair edge. In ad-
dition, the values of the Fermi energy for composites are shown by
short lines of the corresponding color.

weakly depends on its topology. In the direction of the arm-

chair edge of the graphene sheet, the electrical conductance

depends significantly on the topology of the film. The resis-

tance changes drastically with the increase in CNT length.

Using the analogy with graphene nanoribbons, it can be seen

that the regularities in the electronic transport along the arm-

chair edge are determined by the width of the ribbon and its

morphology. In summary, we can conclude that the pillared

graphene films with nanotubes having a diameter of 1.23 nm

are characterized by a relatively high electrical conductivity.

Due to high strength and conductivity, these films, provided a

developed surface and pores for filling with the necessary

connections, could be successfully applied in electronic devices

and as electrodes of storage batteries.
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