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Abstract
Hybrid superconductor–semiconductor nanowires with Rashba spin–orbit coupling are arguably becoming the leading platform for

the search of Majorana bound states (MBSs) in engineered topological superconductors. We perform a systematic numerical study

of the low-energy Andreev spectrum and supercurrents in short and long superconductor–normal–superconductor junctions made of

nanowires with strong Rashba spin–orbit coupling, where an external Zeeman field is applied perpendicular to the spin–orbit axis.

In particular, we investigate the detailed evolution of the Andreev bound states from the trivial into the topological phase and their

relation with the emergence of MBSs. Due to the finite length, the system hosts four MBSs, two at the inner part of the junction and

two at the outer one. They hybridize and give rise to a finite energy splitting at a superconducting phase difference of π, a well-

visible effect that can be traced back to the evolution of the energy spectrum with the Zeeman field: from the trivial phase with

Andreev bound states into the topological phase with MBSs. Similarly, we carry out a detailed study of supercurrents for short and

long junctions from the trivial to the topological phases. The supercurrent, calculated from the Andreev spectrum, is 2π-periodic in

the trivial and topological phases. In the latter it exhibits a clear sawtooth profile at a phase difference of π when the energy split-

ting is negligible, signalling a strong dependence of current–phase curves on the length of the superconducting regions. Effects of

temperature, scalar disorder and reduction of normal transmission on supercurrents are also discussed. Further, we identify the indi-

vidual contribution of MBSs. In short junctions the MBSs determine the current–phase curves, while in long junctions the spec-

trum above the gap (quasi-continuum) introduces an important contribution.
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Introduction
A semiconducting nanowire with strong Rashba spin–orbit cou-

pling (SOC) with proximity-induced s-wave superconducting

correlations can be tuned into a topological superconductor by

means of an external Zeeman field [1-3]. This topological phase

is characterized by the emergence of zero-energy quasiparticles

with Majorana character localized at the nanowire ends. These

Majorana bound states (MBSs) are attracting a great deal of

attention owing to their potential for topological, fault-tolerant

quantum computation [4-6]. Tunneling into such zero-energy

MBSs results in a zero-bias peak of high 2e2/h in the tunnelling

conductance in normal–superconductor (NS) junctions due to

perfect Andreev reflection into a particle–hole symmetric state

[7]. Early tunnelling experiments in NS junctions [8-12] re-

ported zero-bias peak values much smaller than the predicted

2e2/h. This deviation from the ideal prediction, together with al-

ternative explanations of the zero-bias peak, resulted in contro-

versy regarding the interpretation. Recent experiments have re-

ported significant fabrication improvements and high-quality

semiconductor–superconductor interfaces [13-16] with an

overall improvement on tunnelling data that strongly supports

the observation of MBS [17-21].

Given this experimental state-of-the-art [22], new geometries

and signatures beyond zero-bias peaks in NS junctions will

likely be explored in the near future. Among them, nanowire-

based superconductor–normal–superconductor (SNS) junctions

are very promising since they are expected to host an exotic

fractional 4π-periodic Josephson effect [4,23,24], signalling the

presence of MBSs in the junction. While this prediction has

spurred a great deal of theoretical activity [25-32], experiments

are still scarce [33], arguably due to the lack of good junctions

until recently. The situation is now different and, since

achieving high-quality interfaces is no longer an issue,

Andreev-level spectroscopy and phase-biased supercurrents

should provide additional signatures for the unambiguous detec-

tion of MBSs in nanowire SNS junctions. Similarly, multiple

Andreev reflection transport in voltage-biased SNS junctions

[34,35] is another promising tool to provide further evidence of

MBSs [36].

Motivated by this, we here present a detailed numerical investi-

gation of the formation of Andreev bound states (ABSs) and

their evolution into MBSs in nanowire-based short and long

SNS junctions biased by a superconducting phase difference .

Armed with this information, we also perform a systematic

study of the phase-dependent supercurrents in the short- and

long-junction limits. Due to finite length, the junction always

hosts four MBSs in the topological regime. Apart from the

MBSs located at the junction (inner MBSs), two extra MBSs

are located at the nanowire ends (outer MBSs). Despite the

early predictions [4,23,24] of a 4π-periodic Josephson effect in

superconducting junctions containing MBSs, in general we

demonstrate that the unavoidable overlap of these MBSs

renders the equilibrium Josephson effect 2π-periodic [26,27] in

short and long junctions, since they hybridize either through the

normal region or through the superconducting regions giving

rise to a finite energy splitting at phase difference  = π. As an

example, our calculations show that, for typical InSb parame-

ters, one needs to consider junctions with long superconducting

segments of the order of LS ≥ 4μm, where LS is the length of the

S regions, in order to have negligible energy splittings.

In particular, we show that in short junctions with ,

where  is the normal region length and ξ is the superconduct-

ing coherence length, the four MBSs (inner and outer) are the

only levels within the induced gap. On the contrary, the four

MBSs coexist with additional levels in long junctions with

, which affect their phase dependence. Despite this

difference, we demonstrate that the supercurrents in both limits

exhibits a clear sawtooth profile when the energy splitting near

 = π is small, therefore signalling the presence of weakly over-

lapping MBSs. We find that while this sawtooth profile is

robust against variations in the normal transmission and scalar

disorder, it smooths out when temperature effects are included,

making it a fragile, yet useful, signature of MBSs.

We identify that in short junctions the current–phase curves are

mainly determined by the levels within the gap and by the four

MBSs, with only very little quasi-continuum contribution. In

long junctions, however, all the levels within the gap, the MBSs

and the additional levels due to longer normal region together

with the quasi-continuum determine the current–phase curves.

In this situation, the additional levels that arise within the gap

disperse almost linearly with  and therefore affect the features

of the supercurrents carried by MBSs only.

Another important feature we find is that the current–phase

curves do not depend on LS in the trivial phase (for both short

and long junctions), while they strongly depend on LS in the

topological phase. Our results demonstrate that this effect is

purely connected to the splitting of MBSs at  = π, indicating

another unique feature connected with the presence of MBSs in

the junction. The maximum of such current–phase curves in the

topological phase increases as the splitting is reduced, satu-

rating when the splitting is completely suppressed. This and the

sawtooth profile in current–phase curves are the main findings

of this work. Results presented here therefore strongly comple-

ment our previous study on critical currents [37] and should

provide useful insight for future experiments looking for Majo-

rana-based signatures in nanowire-based SNS junctions.
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The paper is organized as follows. In section “Nanowire model”

we describe the model for semiconducting nanowires with

SOC, where we show that only the right combination of Rashba

SOC, a Zeeman field perpendicular to the spin–orbit axis and

s-wave superconductivity leads to the emergence of MBSs.

Similar results have been presented elsewhere but we include

them here for the sake of readability of the next sections. In

section “Results and Discussion” we discuss how nanowire-

based SNS junctions can be readily modeled using the tools of

section “Nanowire model”. Then, we describe the low-energy

Andreev spectrum and its evolution from the trivial into the

topological phase with the emergence of MBSs. In the same

section, we report results on the supercurrent, which exhibits a

sawtooth profile at  = π as a signature of the emergence of

MBSs. In section “Conclusion” we present our conclusions. For

the sake of completeness, we also show wavefunction localiza-

tion and exponential decay as well as homogeneous charge

oscillations of the MBSs in wires and SNS junctions in Support-

ing Information File 1.

Nanowire model
The aim of this part is to properly describe the emergence of

MBSs in semiconducting nanowires with SOC. We consider a

single-channel nanowire in one-dimension with SOC and

Zeeman interactions, the model Hamiltonian of which is given

by [38-43]

(1)

where  is the momentum operator, μ the chemical

potential that determines the filling of the nanowire, αR repre-

sents the strength of Rashba spin–orbit coupling, 

is the Zeeman energy as a result of the applied magnetic field 

in the x-direction along the wire, g is the g-factor of teh wire

and μB the Bohr magneton. Parameters for InSb nanowires

include [8]: the effective mass of the electron, m = 0.015me,

with me being the mass of the electron, and the spin–orbit

strength αR = 20 meV·nm.

We consider a semiconducting nanowire placed in contact with

an s-wave superconductor with pairing potential ΔS′ (which is in

general complex) as schematically shown in Figure 1. Elec-

trons in such a nanowire experience an effective superconduct-

ing pairing potential as a result of the so-called proximity effect

[44,45]. In order to have a good proximity effect, a highly trans-

missive interface between the nanowire and the superconductor

is required, so that electrons can tunnel between these two

systems [13-16]. This results in a superconducting nanowire,

with a well-defined induced hard gap (namely, without residual

quasiparticle density of states inside the induced superconduct-

ing gap). The model describing such a proximitized nanowire

can be written in the basis ( ) as

(2)

where ΔS < ΔS′. Since the superconducting correlations are of

s-wave type, the pairing potential is given by

(3)

where  is the superconducting phase. We set  = 0 when

discussing superconducting nanowires, while the SNS geome-

try of course allows a finite phase difference  ≠ 0 across the

junction.

Figure 1: A semiconducting nanowire with Rashba SOC is placed on a
s-wave superconductor (S’) with pairing potential ΔS′ and it is subject-
ed to an external magnetic field  (denoted by the black arrow). Su-
perconducting correlations are induced into the nanowire via proximity
effect, thus becoming superconducting with the induced pairing poten-
tial ΔS < ΔS′.

It was shown [1,2,46] that the nanowire with Rashba SOC and

in proximity to an s-wave superconductor, described by Equa-

tion 2, contains a topological phase characterized by the emer-

gence of MBSs localized at the ends of the wire. This can be

understood as follows: The interplay of all these ingredients

generates two intraband p-wave pairing order parameters

and one interband s-wave
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Figure 2: Low-energy spectrum of a superconducting nanowire as function of the Zeeman field B. At zero superconducting pairing with finite SOC the
spectrum is gapless and becomes spin-polarized at B = μ as indicated by the green dashed line (a), while a finite superconducting pairing with zero
SOC induces a gap for low values of B (b). As B increases, the induced gap is reduced and closed at B = Δ (vertical magenta dash-dot line). The
bottom panels correspond to both finite superconducting pairing and SOC for LS = 4000 nm (c) and LS = 10000 nm (d). Note that as the Zeeman field
increases the spectrum exhibits the closing of the gap at B = Bc. While in the trivial phase, B < Bc, there are no levels within the induced gap (c,d), in
the topological phase for B > Bc, the two lowest levels develop an oscillatory behaviour around zero energy (c). These lowest levels are the sought-for
MBSs. For sufficiently long wires the amplitude of the oscillations is reduced (d) and these levels acquire zero energy. Solid red, green and dashed
cyan curves indicate the induced gaps Δ1,2 and min(Δ1, Δ2). Parameters: α0 = 20 meV·nm, μ = 0.5 meV, Δ = 0.25 meV and LS = 4000 nm (a,b).

where + and − denote the Rashba bands of H0. The gaps associ-

ated with the ± Bogoliubov–de Gennes (BdG) spectrum are dif-

ferent and correspond to the inner and outer part of the spec-

trum, denoted by Δ1,2 at low and high momentum, respectively.

These gaps depend in a different way on the Zeeman field.

Indeed, as the Zeeman field B increases, the gap Δ1, referred to

as the inner gap, is reduced while Δ2, referred to as the outer

gap, is slightly reduced although for strong SOC it remains

roughly constant. The inner gap Δ1 closes at B = Bc and reopens

for B > Bc giving rise to the topological phase, while the outer

gap remains finite. The topological phase is effectively reached

due to the generation of an effective p-wave superconductor,

which is the result of projecting the system Hamiltonian onto

the lower band (−) keeping only the intraband p-wave pairing

Δ−− [1,2]. Deep in the topological phase B > Bc, the lowest gap

is Δ2.

In order to elucidate and visualize the topological transition, we

first analyze the low-energy spectrum of the superconducting

nanowire. This spectrum can be numerically obtained by

discretising the Hamiltonian given by Equation 1 into a tight-

binding lattice:

(4)

where the symbol  means that v couples the nearest-neighbor

sites i, j; h = (2t − μ)σ0 + Bσx and v = −tσ0 + itSOσy are matrices

in spin space,  is the hopping parameter and

tSOC = αR/(2a) is the SOC hopping. The dimension of H0 is set

by the number of sites of the wire. Then, it is written in Nambu

space as given by Equation 2. Such a Hamiltonian is then diago-

nalized numerically with its dimensions given by the number of

sites NS of the wire. Since this description accounts for wires of

finite length, it is appropriate for investigating the overlap of

MBSs. The length of the superconducting wire is LS = NSa,

where NS is the number of sites and a is the lattice spacing. As

mentioned before, the superconducting phase in the order pa-

rameter is assumed to be zero as it is only relevant when inves-

tigating Andreev bound states in SNS junctions.

In Figure 2 we present the low-energy spectrum for a supercon-

ducting nanowire as a function of the Zeeman field at a fixed

wire length LS. Figure 2a shows the case of zero superconduct-

ing pairing and finite SOC (Δ = 0, αR ≠ 0), while Figure 2b



Beilstein J. Nanotechnol. 2018, 9, 1339–1357.

1343

shows a situation of finite pairing but with zero SOC (Δ ≠ 0,

αR = 0). These two extreme cases are very helpful in order to

understand how a topological transition occurs when the

missing ingredient (either superconducting pairing of finite SO)

is included. This is illustrated in the bottom panels, which corre-

spond to both finite SOC and superconducting pairing for

LS < 2ξM and LS > 2ξM, respectively. Here, ξM represents the

Majorana localization length, which can be calculated from

Equation 2[1,31],

where  and C0 = μ2 + Δ2 − B2. The Majorana locali-

zation length is defined as ξM = max[−1/ksol].

For the sake of the explanation, we plot the spectrum in the

normal state (Δ = 0), Figure 2a, which is, of course, gapless. As

the Zeeman field increases, the energy levels split and, within

the weak Zeeman phase, B < μ, the spectrum contains energy

levels with both spin components. In the strong Zeeman phase,

B > μ, one spin sector is completely removed giving rise to a

spin-polarized spectrum at low energies as one can indeed

observe in Figure 2a. The transition point from weak to strong

Zeeman phases is marked by the chemical potential B = μ

(green dashed line). Figure 2b shows the low-energy spectrum

at finite superconducting pairing, Δ ≠ 0, and zero SOC, αR = 0.

Firstly, we notice, in comparison with Figure 2a, that the super-

conducting pairing induces a gap with no levels for energies

below Δ at B = 0, being in agreement with Anderson’s theorem

[47]. A finite magnetic field induces a so-called Zeeman

depairing, which results in a complete closing of the induced

superconducting gap when B exceeds Δ. This is indeed ob-

served in Figure 2b (magenta dash-dot line). Further increasing

of the Zeeman field in this normal state gives rise to a region for

Δ < B < Bc, which depends on the finite value of the chemical

potential (between red and magenta lines) where the energy

levels contain both spin components (for μ = 0 the magenta

dash-dot and the red dashed line coincide, not shown). Note that

. For B > Bc, one spin sector is removed and the

energy levels are spin-polarized, giving rise to a set of Zeeman

crossings that are not protected. Remarkably, when αR ≠ 0, the

low-energy spectrum undergoes a number of important changes,

Figure 2c,d. First, the gap closing changes from Δ, Figure 2b, to

 (bottom panels). Second, a clear closing of the

induced gap at B =Bc and reopening for B > Bc is observed as

the Zeeman field increases. This can be seen by plotting the in-

duced gaps Δ1,2, which are finite only at finite Zeeman fields. In

Figure 2d, the red, green and dashed cyan curves correspond to

Δ1, Δ2 and min(Δ1, Δ2). Remarkably, the closing and reopening

of the induced gap in the spectrum follows exactly the gaps Δ1,2

derived from the continuum (up to some finite-size corrections).

Figure 3: Schematic of SNS junctions based on Rashba nanowires.
Top: A nanowire with Rashba SOC of length L = LS + LN + LS placed
on top of two s-wave superconductors (S’) with pairing potentials ΔS′
and subjected to an external magnetic field  (denoted by the black
arrow). Superconducting correlations are induced into the nanowire
through the proximity effect. Bottom: Left and right regions of the nano-
wire become superconducting, denoted by SL and SR, with induced
pairing potentials  and chemical potentials , while
the central region remains in the normal state with ΔN = 0 and chemi-
cal potential μN. This results in a superconductor–normal–supercon-
ductor (SNS) junction.

Third, the spin-polarized energy spectrum shown in Figure 2b at

zero SOC for B > Bc is washed out, keeping only the crossings

around zero energy of the two lowest levels. This kind of

closing and reopening of the spectrum at the critical field Bc in-

dicates a topological transition where the two remaining lowest-

energy levels for B > Bc are the well-known MBSs. Owing to

the finite length LS, the MBSs exhibit the expected oscillatory

behaviour due to their finite spatial overlap [48-51]. For suffi-

ciently long wires , the amplitude of the oscillations

is considerably reduced (even negligible), which pins the MBSs

to zero energy. Fourth, the SOC introduces a finite energy sepa-

ration between the two lowest levels (crossings around zero)

and the rest of the low-energy spectrum denoted here as “topo-

logical minigap”. Note that the value of this minigap, related to

the high momentum gap Δ2, remains finite and roughly con-

stant for strong SOC. In the case of weak SOC the minigap is

reduced and for high Zeeman field it might acquire very small

values, affecting the topological protection of the MBSs.

To complement this introductory part, calculations of the wave-

functions and charge density associated with the lowest levels

of the topological superconducting nanowire spectrum are

presented in the Supporting Information File 1.

Results and Discussion
Nanowire SNS junctions
In this part, we concentrate on SNS junctions based on the prox-

imitized nanowires that we discussed in the previous section.

The basic geometry contains left (SL) and right (SR) supercon-

ducting regions of length LS separated by a central normal (N)

region of length LN, as shown in Figure 3. The regions N and



Beilstein J. Nanotechnol. 2018, 9, 1339–1357.

1344

SL(R) are described by the tight-binding Hamiltonian H0 given

by Equation 4 with their respective chemical potentials, μN and

. The Hamiltonian describing the SNS junction without

superconductivity is then given by

(5)

where  with i = L/R and HN are the Hamiltonians of the su-

perconducting and normal regions, respectively,  and

 are the ones that couple Si to the normal region N. The el-

ements of these coupling matrices are non-zero only for adja-

cent sites that lie at the interfaces of the S regions and of the N

region, while zero everywhere else. This coupling is parame-

trized between the interface sites by a hopping matrix v0 = τv,

where , providing a good control of the normal trans-

mission TN. The parameter τ controls the normal transmission

that ranges from fully transparent (τ = 1) to tunnel (τ ≤ 0.6), as

discussed in [37] for short junctions, being also valid for long

junctions.

The superconducting regions of the nanowire are characterized

by chemical potential  and the uniform superconducting

pairing potentials [52,53]  and ,

where Δ < ΔS′ and . The central region of the nano-

wire is in the normal state without superconductivity, ΔN = 0,

and with chemical potential μN. Thus, the pairing potential

matrix in the junction space reads

(6)

Next, we define the phase difference across the junction as

. Thus, the Hamiltonian for the full SNS junction

reads in Nambu space [31,37]

(7)

In what follows, we discuss short ( ) and long ( )

SNS junctions, where LN is the length of the normal region and

 is the superconducting coherence length [52]. The

previous Hamiltonian is diagonalized numerically and in our

calculations we consider realistic system parameters for InSb as

described previously.

Low-energy Andreev spectrum
Now, we are in a position to investigate the low-energy

Andreev spectrum in short and long SNS junctions. In particu-

lar, we discuss the formation of Andreev bound states and their

evolution from the trivial (B < Bc) into the topological phases

(B > Bc). For this purpose we focus on the phase and the

Zeeman-dependent low-energy spectrum in short and long junc-

tions, presented in Figure 4 and Figure 5 for LS ≤ 2ξM. For

completeness we also present the case of  in Figure 6

and Figure 7.

We first discuss short junctions with LS ≤ 2ξM. In this regime,

at B = 0 two degenerate ABSs appear within Δ as solutions to

the BdG equations described by Equation 7, see Figure 4a. It is

interesting to point out that within standard theory for a trans-

parent channel the ABS energies reach zero at  = π in the

Andreev approximation  [54]. Figure 4a, however,

shows that in general the ABS energies do not reach zero at

 = π. The dense amount of levels above |εp| > Δ represents the

quasi-continuum of states, which consists of a discrete set of

levels due to the finite length of the N and S regions. Moreover,

it is worth to point out that the detachment (the space between

the ABSs and quasi-continuum) of the quasi-continuum at

 = 0 and 2π is not zero. It strongly depends on the finite length

of the S regions (see Figure 6).

For a non-zero Zeeman field, Figure 4b and Figure 4c, the

ABSs split and the two different gaps Δ1 and Δ2, discussed in

section ‘Nanowire model’, emerge indicated by the dash-dot red

and dashed green lines, respectively. By increasing the Zeeman

field, the low-momentum gap Δ1 gets reduced (dash-dot red

line), as expected, while the gap Δ2 (dashed green line) remains

finite although it gets slightly reduced (Figure 4b and

Figure 4c). For stronger, but unrealistic values of SOC we have

checked that Δ2 is indeed constant. The two lowest levels in this

regime, within Δ1 (dash-dot red line), develop a loop with two

crossings that are independent of the length of the S region but

exhibit a strong dependence on SOC, Zeeman field and chemi-

cal potential. We have checked that they appear due to the inter-

play of SOC and Zeeman field and disappear when μ acquires

very large values, namely, in the Andreev approximation.

At B = Bc, the energy spectrum exhibits the closing of the low-

momentum gap Δ1, as indicated by red dash-dot line in

Figure 4d. This indicates the topological phase transition, since

two gapped topologically different phases can only be

connected through a closing gap. By further increasing the

Zeeman field, Figure 4e,f, B > Bc, the inner gap Δ1 acquires a

finite value again. This reopening of Δ1 indicates that the

system enters into the topological phase and the superconduct-

ing regions denoted by SL(R) become topological, while the N
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Figure 4: Low-energy Andreev spectrum as a function of the superconducting phase difference  in a short SNS junction with LN = 20 nm and
LS = 2000 nm. Different panels show the evolution with the Zeeman field: trivial phase for B < Bc (a–c), topological transition at B = Bc (d), and in the
topological phase for B > Bc (e,f). The energy spectrum exhibits the two different gaps that appear in the system for finite Zeeman field (marked by
red and green dashed horizontal lines). Note that after the gap inversion at B = Bc, two MBSs emerge at the ends of the junction as almost dispersion-
less levels (outer MBSs), while two additional MBSs appear at  = π (inner MBSs). Parameters: αR = 20 meV·nm, μN = μS = 0.5 meV and
Δ = 0.25 meV.

Figure 5: Same as in Figure 4 for a long junction with LN = 2000 nm and LS = 2000 nm. Note that, unlike short junctions, in this case the four lowest
states for B > Bc coexist with additional levels within the induced gap which arise because LN is longer.
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Figure 6: Same as in Figure 4 for a short junction with LN = 20 nm and LS = 10000 nm. Note that in this case, the emergent outer MBSs are disper-
sionless with , while the inner ones touch zero at  = π acquiring Majorana character.

Figure 7: Same as in Figure 4 for a long junction with LN = 2000 nm and LS = 10000 nm. The four lowest levels coexist with additional levels. The
outer MBSs lie at zero energy and the inner ones reach zero at  = π acquiring Majorana character.
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region remains in the normal state. Thus, MBSs are expected to

appear for B > Bc at the ends of the two topological supercon-

ducting sectors, since they define interfaces between topologi-

cally different regions.

This is what we indeed observe for B > Bc in Figure 4e and

Figure 4f, where the low-energy spectrum has Majorana proper-

ties. In fact, for B > Bc, the topological phase is characterized

by the emergence of two (almost) dispersionless levels with ,

which represent the outer MBSs γ1,4 formed at the ends of the

junction. Additionally, the next two energy levels strongly

depend on  and tend towards zero at  = π, representing the

inner MBSs γ2,3 formed inside the junction. For sufficiently

strong fields, B = 2Bc, the lowest gap is Δ2 indicated by the

green dashed line, which in principle bounds the MBSs. The

quasi-continuum in this case corresponds to the discrete spec-

trum above and below Δ2, where Δ2 is the high-momentum gap

marked by the green dashed horizontal line in Figure 4e,f.

The four MBSs develop a large splitting around  = π, which

arises when the wave-functions of the MBSs have a finite

spatial overlap LS ≤ 2ξM. Since the avoided crossing between

the dispersionless levels (belonging to γ1,4) and the dispersive

levels (belonging to γ2,3) around  = π depends on the overlap

of MBSs on each topological segment. It can be used to quan-

tify the degree of Majorana non-locality (a variant of this idea

using quantum-dot parity crossings has been discussed in

[55,56]). This can be explicitly checked by considering SNS

junctions with longer superconducting regions, where the condi-

tion  is fulfilled such that the energy splitting at  = π

is reduced.

As an example, we present in Figure 6 the energy levels as a

function of the phase difference for , where the low-

energy spectrum undergoes some important changes. First, we

notice in Figure 6 that the energy spectrum at B = 0 for |εp| > Δ,

exhibits a visibly denser spectrum than that in Figure 4

signaling the quasi-continuum of states. Notice that in the topo-

logical phase, B > Bc, the lowest two energy levels, associated

to the outer MBSs, are insensitive to  remaining at zero

energy. Thus, they can be considered as truly zero modes. On

the other hand, the inner MBSs are truly bound within Δ2,

unlike in Figure 4, and for  = 0 and  = 2π they merge with

the quasi-continuum at ±Δ. Thus, an increase in the length of

the superconducting regions favors the reduction of the detach-

ment between the discrete spectrum and the quasi-continuum at

0 and 2π, as it should be for a ballistic junction [23,24]. More-

over, the energy splitting at  = π is considerably reduced, even

negligible. However, it will be always non-zero, though not

visible to the naked eye, due to the finite length and, thus, due

to the presence of the outer MBSs.

The low-energy spectrum as a function of the superconducting

phase difference for different values of the Zeeman field in long

SNS junctions is presented in Figure 5 for LS ≤ 2ξM. Addition-

ally, we show in Figure 7 the case for .

As expected, long junctions contain more levels within the

energy gap Δ, see Figure 5a and Figure 7a, than short junctions.

As we shall discuss, this eventually affects the signatures of

Majorana origin in the supercurrents for B B c, namely, the ones

corresponding to the lowest four levels.

The above discussion can be clarified by considering the depen-

dence of the low-energy spectrum on the Zeeman field at fixed

phase difference  = 0 and  = π. This is shown in Figure 8

(short junction limit), Figure 9 (intermediate junction limit) and

Figure 10 (long junction limit) for LS ≤ 2ξM (panels a and c in

each figure) and  (panels b and d in each figure). In

panels a and b, the gaps Δ1, Δ2 and min(Δ1,Δ2) are also plotted

as solid red, solid green and dashed cyan lines to visualize the

gap closing and reopening discussed in the previous section. In

all cases, it is clear that MBS smoothly evolve from the lowest

ABS either following the closing of the induced gap Δ1, indicat-

ed by the solid red curve, at  = 0 or evolving from the lowest

detached levels at  = π. The latter first cross zero energy,

owing to Zeeman splitting, and eventually become four low-

energy levels oscillating out of phase around zero energy

(Figure 8c). The emergence of these oscillatory low-energy

levels, separated by a minigap Δ2, indicated by the solid green

curve, from the quasi-continuum characterizes the topological

phase of the SNS junction. As expected, the oscillations become

reduced for  and the four levels at  = π become

degenerate at zero energy, see Figure 8b,d.

An increase in the length of the normal section results in an

increase of the amount of subgap levels as observed in Figure 9

and Figure 10. In both cases, in the topological phase, B > Bc,

these additional levels reduce the minigap with respect to short

junctions and also slightly reduce the amplitude of the oscilla-

tions of the energy levels around zero as seen Figure 9a and

Figure 9b as well as Figure 10a and Figure 10b. Also, the mini-

gaps for  = 0 and  = π are different, in contrast to short junc-

tions. In fact, the minigap at  = 0 is almost half of the value at

 = π for the chosen parameters. This can be understood from

the phase dispersion of the long junction ABS spectra such as

the ones in Figure 5 and Figure 7. For longer N regions, this

difference can be even larger.

From the above discussion it is clear that the energy spectrum

of SNS nanowire junctions offers the possibility to directly

monitor the ABSs that trace the gap inversion and eventually

evolve into MBSs.
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Figure 8: Low-energy Andreev spectrum as a function of the Zeeman field in a short SNS junction at  = 0 (a,b) and  = π (c,d) with LS = 2000 nm
(a,c) and LS = 10000 nm (b,d). The low-energy spectrum traces the gap closing and reopening by the solid red curve that corresponds to Δ1, while for
B > Bc we observe the emergence of two MBSs at  = 0 (a) and four MBSs at  = π (c), which oscillate around zero energy with B due to LS ≤ 2ξM
within a minigap defined by Δ2 (solid green curve). For  the MBSs are truly zero modes (b,d). Parameters: LN = 20 nm, αR = 20 meV·nm,
μ = 0.5 meV and Δ = 0.25 meV.

Figure 9: Same as in Figure 8 for an intermediate junction with LN = 400 nm.
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Figure 10: Same as in Figure 8 for a long junction with LN = 2000 nm.

Supercurrents
After having established in detail the energy spectrum in short

and long SNS junctions, we now turn our attention to the corre-

sponding phase-dependent supercurrents. They can be calcu-

lated directly from the discrete Andreev spectrum εp as

[37,54,57]:

(8)

where krmB is the Boltzmann constant, T is the temperature and

the summation is performed over positive eigenvalues εp. By

construction, our junctions have finite length, which implies

that Equation 8 exactly includes the discrete quasi-continuum

contribution.

In Figure 11 and Figure 12 we present supercurrents as a func-

tion of the superconducting phase difference I( ) for different

values of the Zeeman field in short and long SNS junctions, re-

spectively. Panels a and c correspond to LS ≤ 2ξM, while panels

b and d correspond to .

First, we discuss the short junction regime presented in

Figure 11. At B = 0 the supercurrent I( ) has a sine-like depen-

dence on , with a relative fast change of sign around  = π that

is determined by the derivative of the lowest-energy spectrum

profile around  = π. This result is different from usual ballistic

full transparent supercurrents in trivial SNS junctions [54],

where the supercurrent is proportional to sin( /2) being

maximum at  = π. This difference from the standard ballistic

limit can be ascribed to deviations from the ideal Andreev

approximation, see also the discussion of Figure 4a, owing to

the relatively low chemical potential needed to reach the helical

limit and, eventually, the topological regime as the Zeeman

field increases. At finite values of the Zeeman field B, but still

in the trivial phase B < Bc (dashed and dash-dot curves), I( )

undergoes changes. First, the maximum value of I( ) is reduced

due to the reduction of the induced gap that is caused by the

Zeeman effect. Second, I( ) develops a zig-zag profile (just

before and after  = π) signalling a 0–π transition in the super-

current. This transition arises from the zero-energy crossings in

the low-energy spectrum, see Figure 4b,c. As discussed above,

these level crossings result from the combined action of both

SOC and Zeeman field at low μ, and introduce discontinuities in

the derivatives with respect to . Besides these features, all the

supercurrent curves for B < Bc, for both LS ≤ 2ξM and

, exhibit a similar behavior, see Figure 11. Interest-

ingly, the system is gapless at the topological transition, B = Bc,

but the supercurrent remains finite, see red curve in Figure 11c.

For B > Bc, the S regions of the SNS junction become topolog-

ical and MBSs emerge at their ends, as described in the

previous subsection. Despite the presence of MBSs, the super-
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Figure 11: Supercurrent as a function of the superconducting phase difference in a short SNS junction, I( ), for LS = 2000 nm ≤ 2ξM (a,c) and
LS = 10000 nm  2ξM (b,d). Panels a and b show the Josephson current in the trivial phase for different values of the Zeeman field, B < Bc, while
panels c and d correspond to different values of the Zeeman field in the topological phase, B ≥ Bc. Note the sawtooth feature at  = π for .
Parameters: αR=20 meV·nm, μ = 0.5 meV, Δ = 0.25 meV and .

Figure 12: Supercurrent as a function of the superconducting phase difference in a long SNS junction with LN = 2000 nm, for LS = 2000 nm ≤ 2ξM
(a,c) and LS = 10000 nm  2ξM (b,d). Panels a and b show the Josephson current in the trivial phase for different values of the Zeeman field, B < Bc,
while panels c and d correspond to different values of the Zeeman field in the topological phase, B ≥ Bc. In this case the magnitude of the supercur-
rent is reduced, an effect caused by the length of the normal section.
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current I( ) remains 2π-periodic, i.e., I( ) = I(  + 2π). This

results from the fact that we sum up positive levels only, as we

deal with an equilibrium situation. Since the supercurrent is a

ground state property, transitions between the negative and pos-

itive energies are not allowed, because of an energy gap origi-

nating from Majorana overlaps. Strategies to detect the pres-

ence of MBSs beyond the equilibrium supercurrents described

here include the ac Josephson effect, noise measurements,

switching-current measurements, microwave spectroscopy and

dynamical susceptibility measurements [25-30].

As the Zeeman field is further increased in the topological

phase, B > Bc, the supercurrent tends to decrease due to the

finite Majorana overlaps when LS ≤ 2ξM, see dotted and dashed

blue curves in Figure 11d. On the other hand, as the length of S

becomes larger such that  the overlap is reduced,

which is reflected in a clear sawtooth profile at  = π, see dotted

and dashed blue curves in Figure 11d. This discontinuity in I( )

depends on LS and results from the profile of the lowest-energy

spectrum at  = π, as shown in Figure 6d. The sawtooth profile

thus indicates the emergence of well-localized MBSs at the

ends of S and represents one of our main findings.

As discussed above, the supercurrent for B < Bc, Figure 11a and

Figure 11b, does not depend on LS. In contrast, supercurrents in

the topological phase, Figure 11c and Figure 11d, do strongly

depend on LS owing to the emergence of MBSs.

In Figure 12 we present I( ) for long junctions  at dif-

ferent values of the Zeeman field. Panels a and c correspond to

LS ≤ 2ξM and panels b and d correspond to . Even

though the maximum value of the current is reduced in this

regime, the overall behavior is very similar to the short-junc-

tion regime for both B < Bc and B > Bc. The only important

difference with respect to the short junction case is that I( ) in

the long-junction regime does not exhibit the zig-zag profile

due to 0–π transitions.

As the system enters into the topological phase for B > Bc and

LS ≤ 2ξM, Figure 12c, the maximum supercurrent decreases, in-

dicating the non-zero splitting at  = π in the low-energy spec-

trum. Deep in the topological phase, the supercurrent exhibits a

slow (slower than in the trivial phase Figure 12a) sign change

around  = π, and its dependence on  tends to approach a sine

function. However, for , shown in Figure 12d, the

supercurrent acquires an almost constant value as B increases

and develops a clear sawtooth profile at  = π due to the zero

energy splitting in the low-energy spectrum at  = π, similarly

to the short-junction case. It is worth to point out that, although

the maximum supercurrent is slightly reduced, deep in the topo-

logical phase (dashed and dotted blue curves) its maximum

value is approximately close to the maximum value in the trivial

phase, which is different from what we found in the short-junc-

tion case. This is a clear consequence of the emergence of addi-

tional levels within the induced gap due to the increase of LN.

These additional levels exhibit a strong dependence on the su-

perconducting phase, very similar to the inner MBSs as one can

see in Figure 5e,f.

In order analyze the individual contribution of outer and inner

MBSs with respect to the quasi-continuum we calculate and

identify supercurrents for such situations. This is presented in

Figure 13 for short junctions (Figure 13a,b) and for long junc-

tions (Figure 13c,d). In this regime the lowest gap is the high-

momentum gap Δ2, and the levels outside this gap constitute the

quasi-continuum.

Firstly, we discuss short junctions. The supercurrent due to

outer MBSs for LS ≤ 2ξM is finite only around  = π, exhibit-

ing an odd dependence on  around π. However, away from

this point it is approximately zero and independent of  (see

blue curve in Figure 13a). When , the outer MBSs are

very far apart and their contribution to I( ) is zero (see blue

curve in Figure 13b). On the other hand, the contribution of the

inner MBSs to I( ) is enormous and the outer part only slightly

changes the shape of the maximum supercurrent when

LS ≤ 2ξM, while for  the outer MBSs do not contrib-

ute, as shown by the dashed brown curve in Figure 13a,b. More-

over, the inner contribution exhibits roughly the same depen-

dence on  as the contribution of the whole energy spectrum

shown by the black curve in Figure 13a,b. As described in the

previous subsection, the quasi-continuum is considered to be

the discrete energy spectrum above |εp| > Δ2. The quasi-contin-

uum contribution to I( ) is finite and odd in  around π, as

shown by green curves in Figure 13a,b. The quasi-continuum

contribution to the total supercurrent I( ) far away from  = π

is appreciable mainly when the MBSs exhibit a finite energy

splitting as seen in Figure 13a. Interestingly, the outer and in

particular the inner MBSs (levels within Δ2) are the main source

when such overlap is completely reduced and determine the

profile of I( ), as shown in Figure 13b.

In long junctions the situation is different, mainly because more

levels emerge within Δ in the trivial phase. For B > Bc within

Δ2 these additional levels coexist with the inner and outer

MBSs, see Figure 13c,d. The contribution of the outer MBSs to

I( ) exhibits roughly similar behaviour as for short junctions al-

though smoother around  = π , shown by the blue curve in

Figure 13c,d. The inner MBSs, however, have a strong depen-

dence on  and develop their maximum value close to  = 2πn

with n = 0,1,… (see red curve). The outer MBSs almost do not

affect the overall shape of the I( ) curve (see dashed brown
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Figure 13: Supercurrent as a function of  at B = 1.5Bc. Contributions to the supercurrent for (a,b) short and (c,d) long junctions. (a,c) LS ≤ 2ξM and
(b,d) . The different curves in (a,b) correspond to individual contributions to I( ) from outer, inner, and outer + inner (levels within the lowest
induced gap Δ2), quasi-continuum (levels above the lowest gap Δ2) and total levels. In (c,d), the additional magenta curve corresponds to all levels
within Δ2. In long junctions the number of levels within Δ2 exceeds the number of MBSs. MBSs coexist with additional levels within Δ2. Parameters:
αR = 20 meV·nm, μ = 0.5 meV, Δ = 0.25 meV and .

curve). Since a long junction hosts more levels, we also show

by the dash-dot magenta curve the contribution of all the levels

within Δ2, including also the four MBSs. This contribution is

considerably large only close to  = π, with a minimum and

maximum value before and after  = π for LS ≤ 2ξM, respec-

tively. This is indeed the reason why the supercurrent is reduced

as B increases in the topological phase for LS ≤ 2ξM, see dotted

and dashed blue curves in Figure 12c. For  the contri-

bution of all the levels within Δ2 exhibits a sawtooth profile at

 = π, which, instead of reducing the quasi-continuum contribu-

tion (green curve), increases the maximum value of I( ) at

 = π resulting in the solid black curve. Importantly, unlike in

short junctions, in long junctions the quasi-continuum modifies

I( ) around  = π. Thus, a zero-temperature current-phase mea-

surement in an SNS junction setup could indeed reveal the pres-

ence of MBSs by observing the reduction of the maximum

supercurrent. In particular, well-localized MBSs are revealed in

the sawtooth profile of I( ) at  = π. In what follows we

analyze the effect of temperature, variation of normal transmis-

sion and random disorder on the sawtooth profile at  = π of the

supercurrent.

Temperature effects
In this part, we analyze the effect of temperature on supercur-

rents in the topological phase. In Figure 14 we present the

supercurrent as a function of the superconducting phase differ-

ence, I( ), in the topological phase B = 1.5Bc at different tem-

perature values for LS ≤ 2ξM (Figure 14a) and 

(Figure 14b). At zero temperature, for LS ≤ 2ξM, shown by the

black solid curve in Figure 14a, the dependence of the supercur-

rent on  approximately corresponds to a sine-like function. A

small increase in temperature kBT = 0.01 meV (magenta dashed

curve) slightly modifies the profile of the maximum supercur-

rent. However, for  (Figure 14b), the same tempera-

ture (dashed curve) value has a detrimental effect on the

sawtooth profile of I( ) at  = π, which reduces the maximum

value and smooths the curve out due to the thermal population

of ABSs. We have checked that smaller temperature values than

the ones presented in Figure 14 also smooth out the sawtooth

profile but the fast sign change around  = π is still visible. This

effect remains as long as . As the temperature in-

creases, I( ) smoothly acquires a true sine shape, as seen in

Figure 14a. Although the sawtooth profile might be hard to

observe in real experiments, the maximum value of I( ), which

is finite in the topological phase and almost halved with respect

to the trivial phase in short junctions [37], still provides a

measure to distinguish it from I( ) in trivial junctions.

Normal transmission effects
The assumption of perfect coupling between N and S regions in

previous calculations is indeed a good approximation because

of the enormous advances in fabrication of hybrid systems.
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Figure 14: Finite temperature effect on the supercurrent, I( ), in (a,b) a short and (c,d) a long junction. (a,c) LS = 2000 nm ≤ 2ξM and (b,d)
LS = 10000 nm  2ξM. Different curves correspond to different values of kBT. The sawtooth profile smooths out at finite temperature. Parameters:
LN = 20 nm for short and LN = 2000 nm for long junctions, αR = 20 meV·nm, μ = 0.5 meV, Δ = 0.25 meV and .

However, it is also relevant to study whether the sawtooth

profile of I( ) is preserved or not when the normal transmis-

sion TN, described by τ, is varied.

Figure 15 shows the supercurrent I( ) in short junctions at

B = 1.5Bc for different values of τ for LS ≤ 2ξM (Figure 15a)

and  (Figure 15b). When τ is reduced, the supercur-

rent I( ) is also reduced. However, for LS ≤ 2ξM, there is a tran-

sition from a sudden sign change around  = π to a true sine

function with reducing τ, very similar to the effect of tempera-

ture discussed above. Notice that in the tunnel regime, τ = 0.6,

I( ) is approximately zero. For  the sawtooth profile

at  = π is preserved and robust when τ is reduced from the

fully transparent to the tunnel regime, as seen in Figure 15b.

Quite remarkably, in the tunneling regime, I( ) is finite away

from nπ for n = 0,1,…. The finite value of the supercurrent

could serve as another indicator of the non-trivial topology and,

thus, of the emergence of MBSs in the junction.

Disorder effects
Now we analyze the sawtooth profile of I( ) for B > Bc in the

presence of disorder. Disorder is introduced as a random on-site

potential Vi in the tight-binding Hamiltonian given by

Equation 4. The values of Vi lie within [−w, w], with w being

the disorder strength. When considering this kind of disorder,

the chemical potential undergoes random fluctuations. Hence,

values of w do not include .

In Figure 16(a,b) we present I( ) in short junctions at B = 1.5Bc

for 20 disorder realizations and different values of the disorder

strength w. Disorder of the order of the chemical potential μ has

little effect on I( ) as shown by dashed curves in Figure 16a,b.

The behavior of I( ) is approximately the same as without

disorder. This reflects the robustness of the topological phase,

and thus of MBSs, against fluctuations in the chemical poten-

tial [58,59]. Stronger disorder (dotted and dash-dot curves)

reduce the maximum value of I( ) although its general behav-

ior is preserved. The sawtooth profile at  = π in Figure 16b is

robust against moderate values of disorder strength. We have

confirmed that these conclusions are still valid even when we

consider disorder of the order of 5μ (not shown).

Conclusion
In this numerical work we have performed a detailed investiga-

tion of the low-energy spectrum and supercurrents in short

( ) and long ( ) SNS junctions based on nanowires

with Rashba SOC and in the presence of a Zeeman field.

In the first part, we have studied the evolution of the low-energy

Andreev spectrum from the trivial phase into the topological
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Figure 15: Effect of normal transmission through the coupling parameter τ on the supercurrent, I( ), in (a,b) a short and (c,d) a long SNS junction.
(a,c) LS = 2000 nm ≤ 2ξM and (b,d) LS = 10000 nm  2ξM. Although after decreasing τ the magnitude of the supercurrent at  = π decreases, the
sawtooth profile is preserved. Parameters: LN = 20 nm for short and LN = 2000 nm for long junctions, αR = 20meV·nm, μ = 0.5 meV, Δ = 0.25 meV
and .

Figure 16: Effect of random on-site scalar disorder on the supercurrent I( ) in (a,b) a short and (c,d) a long SNS junction at B = 1.5Bc. (a,c)
LS = 2000 nm ≤ 2ξM and (b,d) LS = 10000 nm  2ξM. Each curve corresponds to 20 realizations of disorder, where w is the disorder strength. For
small values of w of the order of the chemical potential, the sawtooth profile at  = π is preserved (see right panel). Parameters: LN = 20 nm for short
and LN = 2000 nm for long junctions, αR = 20 meV·nm, μ = 0.5 meV, Δ = 0.25 meV and .
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phase and the emergence of MBSs in short and long SNS junc-

tions. We have shown that the topological phase is character-

ized by the emergence of four MBSs in the junction (two at the

outer part of the junction and two at the inner part) with impor-

tant consequences to the equilibrium supercurrent. In fact, the

outer MBSs are almost dispersionless with respect to supercon-

ducting phase , while the inner ones disperse and tend to reach

zero at  = π. A finite energy splitting at  = π occurs when the

length of the superconducting nanowire regions, LS, is compa-

rable to or less than 2ξM. Although in principle such energy

splitting can be reduced by making the S regions longer, we

conclude that in a system of finite length the current–phase

curves are 2π-periodic and the splitting always spoils the

so-called 4π-periodic fractional Josephson effect in an equilib-

rium situation.

In short junctions the four MBSs are truly bound within Δ only

when , while in long junctions the four MBSs coexist

with additional levels, which profoundly affects phase-biased

transport. As the Zeeman field increases in the trivial phase

B < Bc, the supercurrent I( ) is reduced due to the reduction of

the induced gap. In this case, the supercurrents I( ) are inde-

pendent of the length of the superconducting regions, LS, an

effect preserved in both short and long junctions.

In short junctions in the topological phase with B > Bc the

contribution of the four MBSs levels within the gap determines

the shape of the current–phase curve I( ) with only little contri-

bution from the quasi-continuum. For LS < 2ξM, the overlap of

MBS wavefunctions at each S region is finite, and the quasi-

continuum contribution is appreciable and of the opposite sign

than the contribution of the bound states. This induces a reduc-

tion of the maximum supercurrent in the topological phase. For

, when both the spatial overlap between MBSs and

the splitting at  = π are negligible, the quasi-continuum contri-

bution is very small and the supercurrent I( ) is dominated by

the inner MBSs. Remarkably, we have demonstrated that the

current–phase curve I( ) develops a clear sawtooth profile at

 = π, which is independent of the quasi-continuum contribu-

tion and represents a robust signature of MBSs.

In the case of long junctions we have found that the additional

levels that emerge within the gap affect the contribution of the

individual MBSs. Here, it is the combined contribution of the

levels within the gap and the quasi-continuum that determine

the full current–phase curve I( ), unlike in short junctions. The

maximum supercurrent in long junctions is reduced in compari-

son to short junctions, as expected. Our results also show that

the maximum value of the supercurrent in the topological phase

depends on LS, acquiring larger values for  than for

LS ≤ 2ξM.

Finally, we have analyzed the robustness of the characteristic

sawtooth profile in the topological phase against temperature,

changes in transmission across the junction and random on-site

scalar disorder. We found that a small finite temperature

smooths it out due to thermal population of ABSs. We demon-

strated that, although this might be a fragile indicator of MBSs,

the fast sign change around  = π could help to distinguish the

emergence of MBSs from trivial ABSs. Remarkably, the

sawtooth profile is preserved against changes in transmission,

i.e., it is preserved even in the tunneling regime. And finally, we

showed that reasonable fluctuations in the chemical potential μ

(up to 5μ) do not affect the sawtooth profile of I( ) at  = π.

Our main contribution are summarized as follows. In short and

long SNS junctions of finite length four MBSs emerge, two at

the inner part of junction and two at the outer ends. The

unavoidable overlap of the four MBSs gives rise to a finite

energy splitting at  = π, thus rendering the equilibrium

Josephson effect 2π-periodic in both short and long junctions.

Current–phase curves of short and long junctions exhibit a clear

sawtooth profile when the energy splitting near  = π is small,

which indicates the presence of weakly overlapping MBSs.

Remarkably, the current–phase curves do not depend on LS in

the trivial phase for both short and long junctions, while they

strongly depend on LS in the topological phase. This effect is

solely connected to the splitting of MBSs at  = π, indicating a

unique feature of the topological phase and therefore of the

presence of MBSs in the junction.

Supporting Information
Supporting Information File 1
Majorana wavefunction and charge density in SNS

junctions.
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