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Abstract
In the current contribution we present a comprehensive study on the heteronuclear carbonyl complex H2FeRu3(CO)13 covering its

low energy electron induced fragmentation in the gas phase through dissociative electron attachment (DEA) and dissociative ioniza-

tion (DI), its decomposition when adsorbed on a surface under controlled ultrahigh vacuum (UHV) conditions and exposed to irra-

diation with 500 eV electrons, and its performance in focused electron beam induced deposition (FEBID) at room temperature

under HV conditions. The performance of this precursor in FEBID is poor, resulting in maximum metal content of 26 atom % under

optimized conditions. Furthermore, the Ru/Fe ratio in the FEBID deposit (≈3.5) is higher than the 3:1 ratio predicted. This is some-

what surprising as in recent FEBID studies on a structurally similar bimetallic precursor, HFeCo3(CO)12, metal contents of about

80 atom % is achievable on a routine basis and the deposits are found to maintain the initial Co/Fe ratio. Low temperature (≈213 K)

surface science studies on thin films of H2FeRu3(CO)13 demonstrate that electron stimulated decomposition leads to significant CO

desorption (average of 8–9 CO groups per molecule) to form partially decarbonylated intermediates. However, once formed these

intermediates are largely unaffected by either further electron irradiation or annealing to room temperature, with a predicted metal

content similar to what is observed in FEBID. Furthermore, gas phase experiments indicate formation of Fe(CO)4 from
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H2FeRu3(CO)13 upon low energy electron interaction. This fragment could desorb at room temperature under high vacuum condi-

tions, which may explain the slight increase in the Ru/Fe ratio of deposits in FEBID. With the combination of gas phase experi-

ments, surface science studies and actual FEBID experiments, we can offer new insights into the low energy electron induced de-

composition of this precursor and how this is reflected in the relatively poor performance of H2FeRu3(CO)13 as compared to the

structurally similar HFeCo3(CO)12.
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Introduction
Direct-write technologies using electron beams for nanostruc-

ture deposition can surpass the limitations of standard lithogra-

phy techniques, such as the growth of three-dimensional nano-

structures with complex geometries [1,2]. Focused electron

beam induced deposition (FEBID) is a powerful technique

relying on the decomposition of transiently adsorbed precursors

under low vacuum conditions [3]. Different strategies have been

used to identify suitable precursors for this process, which relies

on electron–molecule interactions rather than the more common

thermal fragmentation of precursor species, and various classes

of chemical compounds have been considered [4,5] as precur-

sors for FEBID. For instance, metalorganic precursors contain-

ing hydrocarbons and chelating ligands can be stable precur-

sors and simple in handling, but these benefits come at the

expense of incorporation of large amounts of carbon in the

deposits by incomplete decomposition or co-deposition of the

liberated ligands. Recent developments demonstrate elegant

deposit purification techniques to obtain pure, high quality

metals such as Pt and Au by post-growth treatment and in situ

injection of water for carbon removal [6-13]. These oxidative

processes are suitable for precious metals, while other ap-

proaches such as annealing under vacuum [14] and hydrogen at-

mosphere [15,16] are suitable for metals such as Co. However,

alternative precursors for the direct deposition of high-purity

compounds are desired especially for non-precious metals and

more complex compositions.

In FEBID precursor decomposition is primarily induced by

secondary electrons produced as the high-energy primary

beam impinges on the substrate's surface [17,18]. These second-

ary electrons span a wide energy range with significant contri-

bution close to 0 eV, a peak intensity well below 10 eV and a

high energy tail extending well above 100 eV (see e.g., [19-21]

and references therein). In this energy range fragmentation may

be affected by four distinctly different processes, which are

active within different energy ranges, and more importantly,

lead to distinctly different processes; dissociative electron

attachment (DEA), dissociative ionization (DI), and neutral

and dipolar dissociation upon electron excitation (ND and DD).

An account of the nature of these processes, their energy

dependence and the resulting product formation in relation to

their role in FEBID is given in a recent review by Thorman

et al. [22]. A more general, and detailed account on the nature

of these processes can be found in [23-29] and references

therein.

Gas phase experiments under controlled single collision condi-

tions, where the incident electron energy may be varied within

the relevant range, are ideal to study product formation through

the individual processes. Accordingly, such experiments have

been used to map the energy dependence of the absolute and

relative cross sections for low energy electron induced decom-

position of a number of potential and currently used FEBID pre-

cursors. These include Co(CO)3NO [30,31], Pt(PF3)4 [32,33],

W(CO)6 [34], MeCpPtMe3 [35], Fe(CO)5 [36], and more

recently (η3-C3H5)Ru(CO)3Br [37,38] and the heteronuclear

precursor HFeCo3(CO)12 [39,40]. However, though such gas

phase experiments are well suited to map the extent and energy

dependence of the individual processes, their predictive value is

limited by the fact that these do not reflect the actual conditions

when the precursor molecules are adsorbed on surfaces, as is

the case in FEBID. Furthermore, current gas phase experiments

rely on the detection of charged fragments, leaving the poten-

tially significant neutral dissociation [22,33,41] upon electron

excitation largely unexplored.

The single electron/molecule collision information obtained in

the gas phase study may not be sufficient to understand all of

the molecular level processes that occur in FEBID, because

deposition does not occur through isolated molecules in the gas

phase, but on a surface. As a step towards understanding the

reactions of adsorbed precursor molecules in FEBID, UHV-sur-

face science studies have been performed, in which nanoscale

thin films of precursor molecules adsorbed onto inert substrates

were irradiated with 500 eV electrons. Changes in the composi-

tion and bonding in the film have been analyzed with X-ray

photoelectron spectroscopy (XPS), reflection-absorption IR

spectroscopy (RAIRS), and/or high-resolution electron energy

loss spectroscopy (HREELS), while mass spectrometry has

been used to identify gas phase species generated as a result of

electron irradiation. As such the surface science experiments

represent an increased level of complexity compared to gas

phase experiments, with greater relevance to FEBID. However,

such surface studies are conducted in UHV, at low tempera-

tures and under non-steady state conditions and do thus not

fully mimic the actual conditions in FEBID.
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The surface science approach has nonetheless been proven

effective in elucidating electron triggered decomposition of

several FEBID precursors including Pt(PF3)4 [42], W(CO)6

[43], MeCpPtMe3 [44,45], Co(CO)3NO [46], Fe(CO)5 [47] and

potential new precursors such as cis-Pt(CO)2Cl2 [48] and

(η3-C3H5)Ru(CO)3Br [49]. From these surface science studies,

it can be concluded that in general electron induced dissocia-

tion of surface adsorbed precursor molecules proceeds in two

steps. Electron induced desorption of ligands associated with

the precursor occurs to some extent in the first step (e.g., de-

sorption of one of the PF3 groups in Pt(PF3)4 to form a Pt(PF3)3

surface bound intermediate [42]). In the second step, ligand de-

composition typically dominates (e.g., decomposition of the

residual PF3 ligands in the Pt(PF3)3 intermediate, the loss of

fluorine and the formation of a Pt deposit contaminated by P),

although thermal reactions of surface intermediates produced in

the initial decomposition step can also be important (e.g., PF3

desorption from the Pt(PF3)3 intermediate if the substrate tem-

perature is sufficiently high [50]).

To date, the most popular precursor class for FEBID is

homometallic metal carbonyls of homo- and heteroleptic nature

with sufficient vapor pressure. For instance, Fe(CO)5, [51,52]

Fe2(CO)9 [53,54] and Co2(CO)8 [55] have been shown to yield

deposits with high metal content (>60 atom %). In addition,

high resolution FEBID of metal nanostructures below 30 nm

[56] and successful 3D growth [57] has been demonstrated;

however, autocatalytic deposition by spontaneous dissociation

on activated surfaces should be avoided for a selective deposi-

tion [58,59]. The potential of undesired non-electron induced

autocatalytic decomposition illustrates the complexity of the

task of identifying precursors yielding high metal content with

sufficient stability towards autocatalytic dissociation.

Ru3(CO)12 has been used for FEBID in an earlier report on low

temperature substrates [60]; however, the composition of the

decomposition product remains unknown and FEBID using a

substrate at room temperature could not replicate the earlier

results based on chilled substrates [61]. Successful deposition of

Ru containing structures has been demonstrated from an

organometallic precursor leading to RuC9 and required oxygen

co-feeding to remove carbon resulting in RuO2 [61]. Reports on

a heteroleptic Ru carbonyl precursor suggest that the carbonyl

ligands can be cleaved more efficiently by low energy electrons

than other ligands such as allyl and halides [37,49]. Therefore

the investigation of Ru carbonyls as potential FEBID precur-

sors is a promising route. Presently, deposition of heterometal-

lic or composite materials containing more than one metal is

usually realized by using multiple injection systems [62-65].

Recently, an alternative strategy based on heterometallic

HFeCo3(CO)12 precursor species has been demonstrated, which

allows for direct writing of nanoscale deposits with high resolu-

Figure 1: Structural arrangement of HFeCo3(CO)12 and
H2FeRu3(CO)13 illustrating differences in symmetry and ligand bond-
ing. The structures have been drawn using the crystal structure data
determined for the two molecules and are shown in two orientations.
Hydrogen atoms are omitted because their position cannot be deter-
mined by single crystal XRD. Their location is in the center of the Co3
basal plane for HFeCo3(CO)12 [66] and in bridging position between
either equivalent Ru atom containing a CO bridge to the Fe apex and
the one Ru Atom with exclusively terminal CO ligands in
H2FeRu3(CO)13 [72].

tion, predefined metal ratio and high metal content

(>80 atom %) [66]. High purity of deposits and high resolution

writing are essential to engineer geometries that are not acces-

sible by crystallization or other template-based approaches. One

field of interest in respect to such metallic deposits is the inves-

tigation of physical phenomena such as magnetism at the nano-

scale. Magnetic nanostructures are fundamental building blocks

for applications in data storage and processing as well as the

potential successor technologies based on magnonics [67] and

spintronics [68] combined with high integration density relying

on 3D nanostructure formation. Two- and three-dimensional

structures of FEBID-derived magnetic nanostructures have been

prepared, [16,53,56,57,69-71] but alternative precursors are

desired to predefine different compositions and increase spatial

resolution of deposits.

The structures of molecular precursor species are required for

theoretical treatment and calculation of orbital energies for the

electronic ground state (highest occupied molecular orbital;

HOMO) and as a base for calculations of the singly occupied

molecular orbital (SOMO) energy of the respective anion

formed upon electron attachment. Thus, in context to the cur-

rent discussion, the solid state structures of HFeCo3(CO)12 and

H2FeRu3(CO)13 have been obtained by single crystal X-ray

diffraction (Experimental section and as described in literature

[66,72]). Figure 1 shows both molecular structures side by side
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and illustrates the common tetrahedral framework of the metal

atoms of these heterometallic clusters.

In H2FeRu3(CO)13 and HFeCo3(CO)12 each tetrahedron

contains one iron atom and three ruthenium or cobalt atoms, re-

spectively. The coordination sphere contains the carbonyl as

well as hydride ligands, which results in a highly symmetrical

molecule for HFeCo3(CO)12 and a much less symmetrical

arrangement for H2FeRu3(CO)13. For example, there are two

non-equivalent Ru positions including one with three terminal

CO ligands and two bridging to the two remaining Ru atoms in

the plane, while all positions of the Co atoms are equivalent.

Moreover, in contrast to exclusively terminal CO ligands on the

Fe apex in HFeCo3(CO)12, the Fe apex in H2FeRu3(CO)13

contains two bridging and two terminal CO ligands. In addition,

the bond lengths of the Fe apex to the three remaining metal

atoms within the tetrahedron are in the range of 2.538–2.558 Å

for HFeCo3(CO)12 and 2.655–2.705 Å in H2FeRu3(CO)13. One

of the Ru–Fe bonds in H2FeRu3(CO)13, which does not contain

any bridging CO ligand, is much longer than the other two and

therefore it resembles the transition state upon electron capture

as described in literature for HFeCo3(CO)12 [39]. Structural

differences will be important for the electron induced decompo-

sition and are discussed vide infra.

In the current contribution, we report on similarities and differ-

ences of the heterometallic precursors H2FeRu3(CO)13 and

HFeCo3(CO)12 using several techniques and allowing for com-

parison between the electron induced decomposition of these

compounds in the gas phase, on the surface and during FEBID.

The choice of H2FeRu3(CO)13 was motivated by its structural

similarities to those of HFeCo3(CO)12 which, in turn, has

proven exceptionally good performance in FEBID of pure,

stoichiometric metal alloy structures [66]. Furthermore, the

H2FeRu3(CO)13 precursor is the only stable hydridocarbonyl

with 1:3 Fe/Ru ratio. Other hydridocarbonyls, such as

H3FeRu2(CO)13
− are only stable as anions that cannot be con-

verted into neutral molecules. An exception is H2Fe2Ru2(CO)13

with an Fe2Ru2 tetrahedral metal core. However, this com-

pound requires different synthesis conditions and is not ex-

pected to be better suited for FEBID. To the best of our know-

ledge, this is the first extensive report on a heteronuclear pre-

cursor providing well-rounded insight into fundamental elec-

tron–molecule interactions including electron induced decom-

position characteristics in the gas phase and on surfaces as well

as its performance in the actual FEBID process. These studies

are highly interesting due to the excellent behavior of

HFeCo3(CO)12 in the FEBID process including high metal

content, predefined metal ratio and also the high resolution

deposition of nanostructures [66]. In contrast, depositions using

H2FeRu3(CO)13 have metal content of merely ≈25 atom % and

varying metal ratios dependent on process parameters. We

relate similarities and specific differences in structure and bond-

ing and compare the fragmentation behavior of both heteronu-

clear precursors.

Results and Discussion
Gas-phase dissociative electron attachment
and dissociative ionization of H2FeRu3(CO)13
In the current section we discuss decomposition of the

heteronuclear complex H2FeRu3(CO)13 through dissociative

electron attachment (DEA) and dissociative ionization and we

compare the fragmentation patterns observed to our previous

work on HFeCo3(CO)12. In the energy range from about 0 eV

up to about 25 eV DEA to both these potential precursors is

characterized by a very rich fragmentation pattern. For

HFeCo3(CO)12 [39,40], 23 distinct, identifiable, negative ion

fragments are observed in this energy range, along with the

intact molecular anion, and for H2FeRu3(CO)13 29 fragments

are assigned to discrete molecular compositions. Dissociative

ionization of these compounds is also extensive with a dominat-

ing contribution from sequential CO loss, but also metal–metal

bond cleavage and doubly charged cationic fragments are sig-

nificant in DI of H2FeRu3(CO)13 at 70 eV impact energy.

In the current DEA experiments the ion yield curves are re-

corded by scanning through the relevant electron energy range

with the quadrupole mass spectrometer set to only allow

transmission of one m/z ratio. However, to achieve sufficient

signal intensity the mass resolution is kept fairly low, practi-

cally opening up a transmission window of about 2 mass units.

The fragment assignment is fairly straight forward for

HFeCo3(CO)12 where the isotope distribution spans a mass

range of 7 amu with one predominant isotope peak. This is to be

compared to the mass of CO, i.e., 28 amu, which is the smallest

neutral unit lost in the DEA process. For H2FeRu3(CO)13, on

the other hand, the isotope distribution spans about 30 mass

units with about 10 mass units span of significant peaks. To

demonstrate this, Figure 2 compares the isotope distribution for

a) HFeCo3(CO)12 and b) H2FeRu3(CO)13. It is clear from

Figure 2 that an unambiguous assignment of contributions to

the respective ion yield curves for H2FeRu3(CO)13 from the m/z

ratio alone is often not straightforward. This is further compli-

cated by the fact that the principal mono-isotopic mass of iron is

56 amu, i.e., two times that of CO. Furthermore, DEA cross

sections for individual fragments may vary by orders of magni-

tude and an insignificant m/z "spill-over" may thus dominate the

respective ion yield curves.

To account for this we have calculated the threshold energy for

the individual processes at the PBE0 [74,75] /ma-def2 TZVP

[76,77] level of theory. We have previously compared the per-
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Figure 2: Isotope distribution of a) HFeCo3(CO)12 and
b) H2FeRu3(CO)13. Isotope distribution for both compounds are
adapted from [73].

formance of PB86 to that of PBE0 for threshold calculations in

DEA to HFeCo3(CO)12 [39] and found that while PB86 repro-

duced the structural parameters from the X-ray diffraction

(XRD) measurements very well, this functional overestimated

the threshold energies significantly, PBE0, on the other hand

delivered threshold energies in good agreement with our experi-

mental appearance energies. We thus use the threshold energies

calculated at the PBE0 level of theory along with the energy de-

pendence of the fragment formation to assign the contributions

in the individual ion yield curves to the respective fragments.

Furthermore, to aid the discussion, signal identified as m/z spill

over in the respective ion yield curves are presented in grey to

be clearly distinguishable from the principal contributions under

discussion. Finally, while we could state with fair confidence

where the hydrogen is still attached to negative ion fragments

formed from HFeCo3(CO)12 [39,40] we have no means to

verify this for H2FeRu3(CO)13, this also applies to the DI spec-

tra. Generally, we assume that the hydrogens remain attached to

the Ru3 base plane but in our discussion we do not explicitly

account for their whereabouts, except where these are relevant

for the calculation of the thresholds for the respective dissocia-

tion channels.

Dissociative electron attachment to H2FeRu3(CO)13: Disso-

ciative electron attachment to the heteronuclear complexes

H2FeRu3(CO)13 is characterized by two primary fragmentation

pathways; the apex loss and the loss of a Ru(CO)n. A further,

minor channel leading to the formation of [Ru2(CO)n]− with

n = 4–7 is also observed. The apex loss appears predominantly

with charge retention on the iron containing moiety through the

formation of [Fe(CO)4]− and to a much lesser extent through

the formation of [Fe(CO)3]− and [Fe(CO)2]−, as is shown in

Figure 3a. The apex loss also leads to the formation of the com-

plementary fragments [M − Fe(CO)4]−, [M − Fe(CO)3]−

and [M − Fe(CO)2]− with appreciable intensity on the

[M − Fe(CO)3]− fragment. Charge retention on the remaining

Ru3(CO)n base plane moiety is also observed along with further

Figure 3: Negative ion yield curves for the formation of a) [Fe(CO)n]−
and b) [Ru(CO)n]− up on electron attachment in the energy range from
0–10 eV. The thermochemical thresholds for the respective channels
calculated at the PBE0/ma-def2 TZVP level of theory are given in
parenthesis and indicated by red arrows.

Figure 4: Loss of Fe(CO)2 (panel a), Fe(CO)3 (panel b), Fe(CO)4
(panel c) and additional loss of up to 7 COs (from panel d to panel j)
through dissociative electron attachment to H2FeRu3(CO)13. The ther-
mochemical thresholds for the respective channels calculated at the
PBE0/ma-def2 TZVP level of theory are given in parenthesis and indi-
cated by red arrows.

CO loss, up to 11 CO in total, as shown in Figure 4. Based on

our threshold calculations we attribute these channels to the loss

of a neutral Fe(CO)4 and additional loss of up to 7 CO from the

charge retaining moiety.

Similar to the apex loss, we also observe the formation of

[Ru(CO)4]− with significant intensity and the formation of
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[Ru(CO)3]− and [Ru(CO)2]− with considerably less intensity, as

shown in Figure 3b. Here we also observe the complementary

ions [M − Ru(CO)4]− and [M − Ru(CO)3]− and further, sequen-

tial CO loss from the charge retaining, FeRu2 containing moiety

up to a total loss of 11 CO units. Similar to the apex loss we at-

tribute these fragments to an initial loss of a neutral Ru(CO)4

unit and an additional loss of up to 7 CO units from the charge-

retaining moiety. The ion yield curves for these channels are

shown in Figure 5.

The respective ion yield curves for the [Fe(CO)n]− apex loss

and the [Ru(CO)n]− loss from H2FeRu3(CO)13, shown in

Figure 3, are almost identical to these observed from

HFeCo3(CO)12 and reported earlier. We have discussed these in

detail elsewhere [39]. In brief, based on calculations at the

BP86/def2 TZVP level of theory we find the LUMO of

HFeCo3(CO)12 to have a strong Fe–Co antibonding character

along the Fe–Co facets and the ground state negative ion

formed up on single electron attachment to this molecule

relaxes by substantial elongation of two of the three Fe−Co

bonds and transformation of one of the terminal Co–COs to a

Fe−CO−Co bridging ligand. Furthermore, the relative fraction

of the spin density centered on the apical iron in the relaxed

ground state [HFeCo3(CO)12]− anion is markedly larger than

that on the cobalt atoms forming the base plane.

The situation is different for H2FeRu3(CO)13 where the C3v

symmetry is broken with a bridging CO between two of the

three base plane metal atoms (Ru) and the apex iron. The

HOMO of H2FeRu3(CO)13 shows a bonding character along the

bridging COs between the base plane and the apex but no sig-

nificant Ru−Fe bonding contribution is present. Also, the

Ru−Fe anti-bonding character of the LUMO is not clear. This is

demonstrated in Figure S1, Supporting Information File 1,

which shows the isosurfaces for the relevant MOs. Accordingly,

single electron occupation of the LUMO of H2FeRu3(CO)13

results in a moderate geometry change as compared to

HFeCo3(CO)12 and the significant weakening of metal–metal

bonds from the base plane to the apex observed for

HFeCo3(CO)12 is not observed for H2FeRu3(CO)13. Rather, a

moderate metal–metal bond weakening is observed, both within

the Ru base plane and between the base plane and the apex, i.e.,

from 2.934 to 3.037 Å between the hydrogen-bridged ruthe-

niums and from 2.687 to 2.781 Å between the iron and ruthe-

niums, where these are carbonyl bridged. Also a moderate

increase in distance between the non-hydrogen bridged ruthe-

niums is observed, i.e., from 2.853 to 2.898 Å, but all further

geometry changes are insignificant. (For completeness the

geometries of the ground state neutral and anionic

H2FeRu3(CO)13, optimized at the BP86/def2-TZVP level of

theory, are shown in Figure S4 and the respective Cartesian co-

Figure 5: Negative ions formed through loss of Ru(CO)3 (panel a),
Ru(CO)4 (panel b) and further loss of up to 7 COs (panel c to i)
through dissociative electron attachment of H2FeRu3(CO)13. Also the
ion yields for Ru2(CO)n with n = 7–4 appear in panels f)–i) respectively,
due to the overlap of the isotope distribution of these fragments with
that of the respective [M − Ru(CO)4 − nCO]− (n = 4–7) fragments. The
thermochemical thresholds for the respective channels calculated at
the PBE0/ma-def2 TZVP level of theory are given in parenthesis and
indicated by red arrows.
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Figure 6: Calculated spin density of the [H2FeRu3(CO)13]− anion; a) in
the constrained geometry of neutral H2FeRu3(CO)13 (vertical transi-
tion) b) in the relaxed ground state geometry of the anion.

ordinates and relevant bond lengths and angles are given in

Tables S1 and S2, respectively, in Supporting Information

File 1). Furthermore, as shown in Figure 6, the spin density

calculated for the ground state [H2FeRu3(CO)13]− anion,

strained within the neutral geometry, is very similar on all metal

atoms. Relaxation to the ground state anionic geometry

(Figure 6b), however, leads to a relative increase in the spin

density on the Ru base plane atoms as compared to the Fe-apex.

It is clear that the comparison of the iso-surfaces for the respec-

tive MOs for H2FeRu3(CO)13 and HFeCo3(CO)12, the spin den-

sity of their anions and the geometrical changes between the

respective neutral and anionic ground states, does not offer a

quantitative explanation of their different behavior with regards

to DEA. However, the difference is significant, especially with

regards to the relaxation of the metal–metal bonds between the

base plane and the apex as well as within the base plane. While

the relaxation of the ground state anion of HFeCo3(CO)12 leads

to a spontaneous and significant weakening of the metal bonds

from the base plane to the apex, the bond weakening within

H2FeRu3(CO)13 is much less significant and is similar within

the Ru3 base plane and between the base plane and the apex.

Furthermore, the relative spin density on the apex iron is much

more significant for the anionic ground state of HFeCo3(CO)12

than for H2FeRu3(CO)13. This is in line with the observation of

the apex loss from HFeCo3(CO)12 being restricted to charge

retention on the Fe containing moiety while that from

H2FeRu3(CO)13 also leads to a considerable fraction with

charge retention on the base plane fragment. Tentatively we

offer the explanation that the apex loss from HFeCo3(CO)12 is a

spontaneous process proceeding directly along a repulsive path

on the respective potential energy surface of the ground state

anion. For H2FeRu3(CO)13, on the other hand, energy dissipa-

tion is more effective leading to more apparent competition be-

tween the apex loss and base plane fragmentation of the ground

state [H2FeRu3(CO)13]− anion.

Furthermore, fragmentation of the base plane is also observed

through the formation of [Ru2(CO)n]− with n = 4–7, though

with comparatively low intensity. The m/z ratios for the isotope

distributions for these fragments overlap considerably with

those for [M − Ru(CO)4 − nCO]− with n = 7–4, respectively.

These fragments, thus appear in the same ion yield curves

displayed in panels (f)–(i) in Figure 5. The assignment of these

fragments is based on their calculated thermochemical thresh-

olds, which are displayed in the respective panels. As the

[Ru2(CO)n]− n = 4–7 thresholds are lower, these could in prin-

ciple contribute to the corresponding higher energy yields

assigned to [M − Ru(CO)4 − nCO]− with n = 7–4, respectively.

We do, however, consider this unlikely as the threshold values

for the respective fragments correspond very well with the

respective onsets. These are distinct progressions of sequential

CO loss and as is discussed here below we attribute these to

metastable decay. As typical for such processes the onset of a

proceeding channel (n + 1 CO) coincides with the maximum

probability for the preceding one (n CO), and correspondingly

the onset should coincide with the thermochemical threshold.

Based on our analysis,  sequential loss of CO from

H2FeRu3(CO)13 with the remaining metal core intact is not ob-

served. This is distinctly different from the fragmentation

pattern observed for HFeCo3(CO)12 through DEA [39,40].

While the apex loss through [Fe(CO)4]−, [Fe(CO)3]− and

[Fe(CO)2]− formation is also observed from HFeCo3(CO)12

with similar relative cross sections as for H2FeRu3(CO)13,

charge retention on the Co3 base plane is not observed in
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HFeCo3(CO)12, neither is the formation of [Co(CO)4]− or

[Co(CO)3]−. However, similar to H2FeRu3(CO)13 the loss of a

single Co and 4–10 CO is observed from HFeCo3(CO)12,

though with very low intensity (see Figure S5, Supporting

Information File 1). We attributed this to insignificant neutral

Co(CO)4 loss associated with further CO loss. Furthermore,

sequential CO loss from the intact metal core is the dominant

channel in DEA to HFeCo3(CO)12, while, as stated above, this

channel is not observed from H2FeRu3(CO)13.

Figure 4 shows the ion yield curves for the formation of the

fragments [M − Fe(CO)2]−, [M − Fe(CO)3]−, [M − Fe(CO)4]−

and [M − Fe(CO)4 − nCO]− with n = 1–7, i.e., the apex loss

with charge retention on the Ru3 base plane and additional CO

loss. The threshold for the corresponding channels are denoted

in the respective panels, assuming neutral Fe(CO)n loss up to

n = 4 and further sequential CO loss after that. In these calcula-

tions the hydrogens are retained on the respective ruthenium

base plane fragments. We note in this context, that from the

respective m/z ratios, these fragments could principally also be

assigned as [M – (n + 2)CO]−, however, the threshold for such

sequential CO loss from the molecular anion are generally

about 3–9 eV above the observed ones. These are listed in com-

parison with the thresholds for the corresponding [M – Fe(CO)4

– nCO] fragments in Table S3, Supporting Information File 1.

For H2FeRu3(CO)13 the loss of the neutral Fe(CO)2 unit, i.e.,

the rupture of both Fe–CO bonds to the bridging CO ligands is

observed with low intensity through a narrow contribution at

around 0 eV (Figure 4a). At the PBE0/ma-def2-TZVP level of

theory the threshold for this channel is found to be 1.2 eV, and

we thus attribute this low intensity contribution to the high

energy tail of the Maxwell–Boltzmann inner energy distribu-

tion at the current experimental conditions, T = 338 to 343 K.

However, we cannot exclude that we have missed the most

stable anionic structure in our calculations, despite the consider-

ation of a number of potential structures.

With regards to the charge retention, this is the complementary

channel to the formation of [Fe(CO)2]− which appearance

energy is about 3 eV (Figure 3a) and for which we calculate the

threshold to be about 0.85 eV. The next two channels, i.e., the

formation of [M − Fe(CO)3]− and [M − Fe(CO)4]− are found to

be exothermic by 0.14 and 0.75 eV, respectively, while the

thresholds for the complementary channels leading to the for-

mation of [Fe(CO)3]− and [Fe(CO)4]− (Figure 3a) are found to

be endothermic by 0.21 eV and exothermic by 0.14 eV, respec-

tively. Comparing Figure 3a and Figure 4, it is clear that the ion

yield curves for the fragments that are complementary with

regards to the charge retention are also complementary with

regards to the energy dependence and efficiency of their forma-

tion. Hence, while the [M − Fe(CO)3]− formation is a dominant

channel with a maximum contribution at about 0 eV, the forma-

tion of [Fe(CO)3]− is observed with moderate intensity

and an appearance energy of about 0.5 eV. Conversely,

[M − Fe(CO)4]− is only observed with moderate intensity and

an appearance energy of about 0.5 eV, while the complementa-

ry fragment [Fe(CO)4]− is the highest intensity fragment ob-

served from this compound, with the main contribution peaking

at about 0 eV. In principle all exothermic channels are

competing paths at 0 eV incident electron energy, however, the

paired energy dependence of the [M − Fe(CO)3]− and

[Fe(CO)3]− fragments as well as that of the [M − Fe(CO)4]− and

[Fe(CO)4]− fragments implies that the rate determining step is

strongly coupled to the charge retention. Tentatively we attri-

bute this to two competing initial steps on the respective reac-

tion paths, i.e., the initial rupture of a) a Fe−CO or b) a Ru−CO

bond to one of the two Fe−CO−Ru bridging carbonyls. In this

picture, the initial rupture of a Fe−CO bond to one of the two

Fe−CO−Ru bridging carbonyls leads predominantly to charge

retention on the iron containing moiety while a Ru−CO bond

rupture leads predominantly to charge retention at the Ru3 base

plane moiety.

In this context, and to aid the proceeding discussion, we note

that the observation window of our experimental setup is about

10 μs, which is the extraction time from the electron–molecule

interaction region. Fragments that dissociate further after ex-

traction do not maintain stable trajectories within the quadru-

pole mass filter and are thus not detected. This is about 50 μs,

which is the approximate lifetime required for a fragment to be

observed.

We now turn to discuss the [M − Fe(CO)4 − nCO]− and [M −

Ru(CO)4 − nCO]− fragments from H2FeRu3(CO)13 with

n = 1–7 (Figure 4d–j and Figure 5c–i), and we compare these

with sequential CO loss from HFeCo3(CO)12 leading to the

fragments [M – nCO]− with n = 3–12. These regressions are

remarkable for three different reasons, as is discussed in detail

for HFeCo3(CO)12 elsewhere [40] and we believe that the same

considerations hold equally for H2FeRu3(CO)13. In brief, both

these molecules show negative ion formation up to above 20 eV

incident electron energy, which is more than 10 eV above their

respective ionization energy. Furthermore, the lifetime of these

ions with regards to autodetachment is long enough to allow for

detachment of all CO units from HFeCo3(CO)12 and Fe(CO)4

or Ru(CO)4 along with additional loss of up to 7 CO units from

H2FeRu3(CO)13. In both cases the formation of individual frag-

ments is confined to a well-defined energy range showing

"resonance-like features" in the ion yield curves. The onset of

the respective contributions, however, agrees well with their ex-

pected thermochemical thresholds and the maxima of
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[M − nCO]− from HFeCo3(CO)12 and [M – Fe(CO)4 – nCO]−

and [M – Ru(CO)4 – nCO]− from H2FeRu3(CO)13 coincide

with the succeeding [M − (n + 1)CO]−, [M – Fe(CO)4 –

(n + 1)CO]− and [M – Ru(CO)4 – (n + 1)CO]− fragments, re-

spectively. This behavior is typical for sequential metastable

ligand loss, where [M −  nCO]−  is the precursor of

[M − (n + 1)CO]− and the extent of the fragmentation is deter-

mined by the available excess energy. This, however, would

require a quasi-continuous electron attachment over the energy

range from around few eV up to above 20 eV for both com-

pounds. For HFeCo3(CO)12 we postulated [40] that such a con-

tinuum is realized through a dense "band" of occupied and

unoccupied molecular orbitals at the HOMO/LUMO gap of this

molecule supporting electron attachment and the formation of

long lived, transient negative ions at high energies through

multiple electron excitations associated with the attachment

process, i.e., the formation of "multi-particle multi-hole reso-

nances". This is enabled through the polynuclear nature of these

organometallic compounds providing a dense band of occupied,

primarily metal-based orbitals (d-orbitals) and the high number

and different nature of the carbonyl ligands (bridging and termi-

nal) providing high density of unoccupied ligand CO π*

orbitals. Along with the appreciable mixing of these orbitals,

this allows for multiple electronic excitations in conjunction

with the electron attachment process.

Figure 7 compares the MO diagrams for H2FeRu3(CO)13 and

HFeCo3(CO)12 showing that their MO structure is very similar

in this respect, with both compounds possessing a dense band of

occupied and unoccupied molecular orbitals at the HOMO/

LUMO gap. These are spaced about 3 eV apart allowing for

more than 6 electronic transitions at about 20 eV incident elec-

tron energy.

In an intermediate extraction, we can conclude that the com-

pounds H2FeRu3(CO)13 and HFeCo3(CO)12 show a very simi-

lar electron attachment profile with a series of two to three low

energy single particle resonances supporting negative ion for-

mation in the energy range from 0 to about 2–3 eV. At interme-

diate energies the MO-structure of these compounds allows for

negative ion formation supported through concomitant elec-

tronic excitation, i.e., one-hole two-particle resonances. At high

energies up to about 20 eV, we anticipate that long lived nega-

tive ion formation is supported by multiple electron excitations,

i.e., through "multi-particle multi-hole resonances" [40].

Together these resonances provide a quasi-continuous attach-

ment profile from about 0 eV up to above 20 eV.

The main difference between these compounds, with regards to

DEA, lies in the fragmentation process of the molecular anions

formed, rather than the initial electron attachment process. For

Figure 7: Calculated MO diagrams of H2FeRu3(CO)13 and
HFeCo3(CO)12. Red lines represent the unoccupied molecular orbitals
and blue lines the occupied molecular orbitals.

HFeCo3(CO)12 the two main channels are (i) the apex loss

leading mainly to the formation [Fe(CO)4]− but also [Fe(CO)3]−

and (ii) sequential CO loss from the molecular anion leading to

the fragments [M – nCO]− with n = 1–12. Hence, there are two

parallel paths where the initial CO loss competes with the apex

loss in the low energy range:

(1)

and

(2)

For H2FeRu3(CO)13, on the other hand, the apex loss (mainly as

Fe(CO)4) or the loss of a single ruthenium from the base plane

(mainly as Ru(CO)4) precedes all further fragmentation. Where

the charge retention is on the metal tetracarbonyl (M(CO)4)
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fragment, further fragmentation of the neutral fragment is not

expected, as this channel proceeds predominantly at or close to

0 eV. However, when the charge retention is on the respective

Ru3 or FeRu2 containing fragments further loss of up to 7 CO

units is observed. This situation is shown in Equation 3 and

Equation 4 for the apex loss as Fe(CO)4 and further CO loss

from the Ru3 base plane fragment:

(3)

and

(4)

Furthermore, while insignificant base plane fragmentation is ob-

served for HFeCo3(CO)12, base plain fragmentation of

H2FeRu3(CO)13 is observed through [Ru(CO)n]− and [M –

Ru(CO)n]− formation with n = 2–4, [M – Ru(CO)4 – nCO]−

with n = 1–7 and [Ru2(CO)n]− with n = 4–7.

Dissociative ionization, different from DEA, is a non-resonant

process with an onset at or slightly above the ionization limit of

the respective compounds. At threshold, DI is generally charac-

terized by single bond ruptures, i.e., the lowest energy channels.

With increasing electron impact energy further channels open

up and the DI cross sections for individual channels increases

until the total cross section reaches a maximum in the range be-

tween 70 and 100 eV. At higher electron impact energies the

energy transfer efficiency diminishes, reflected in a gradual de-

crease in the total cross section as the impact energy increases

further. At about 70 eV all DI channels are generally close to

their maxima and DI spectra at this energy normally give a

good picture of the integral efficiency of the individual chan-

nels, though they do not accurately reflect the onset region

where different channels are opening up and the branching

ratios are markedly different.

Figure 8 shows DI spectra of H2FeRu3(CO)13 recorded at an

impact energy of 70 eV. Panel (a) shows the m/z range from

about 50 to 315 while panel (b) shows the m/z range from about

280 to 670. The fragmentation of H2FeRu3(CO)13 at 70 eV

impact energy is very rich and characterized by broad contribu-

tions and significant overlap resulting from the wide isotope

distribution of ruthenium. The accurate interpretation of the

spectra is further complicated due to the fact that the mass of

the principal iron isotope (56 amu) is two times that of CO, not

allowing for differentiation between Fe loss and the loss of two

CO from the m/z ratios alone. Furthermore, in the lower m/z

range we observe contributions from doubly charged fragment

ions, though with comparably low intensity. For the low m/z

range up to about 300, the dominating regression can be unam-

biguously assigned to [Fe(CO)n]+ with n = 0–5. The higher m/z

range, on the other hand, is characterized by two main regres-

sions which cannot be unambiguously assigned to defined mo-

lecular composition from the m/z ratios alone. The first regres-

sion may be assigned as [M – nCO]+ with n = 3–13, but may

also be attributed to [M – Fe – (n − 2)CO]+. The second regres-

sion is [M – Ru – nCO]+ with n = 6–11 which similarly may

also be attributed to [M – Ru – Fe – (n − 2)CO]+. Further signif-

icant contributions are observed from [M – 2Ru – 6CO]+ and

[M – 2Ru – 7CO]+ in this m/z range. Again, these m/z frag-

ments may also be assigned to the respective [M – 2Ru – Fe –

4CO]+ and [M – 2Ru – Fe – 5CO]+ ions.

To enable better comparison with the surface experiments dis-

cussed in the next section and specifically to try to identify

whether DEA or DI is likely to play the dominating role in the

decomposition of H2FeRu3(CO)13 physisorbed on a substrates

surface, we have estimated the average CO loss per incident

electron for both the DI and DEA process. For DEA this is esti-

mated by multiplying the integrated intensity of the individual

channels with the number of CO lost in the process, summing

this up for all channels and dividing the derived total CO loss

with the total DEA intensity. For DI the same procedure is used,

however, the respective integral intensities are estimated from

the peak intensities at the m/z ratios for the respective principal

isotopes. The measured intensities are then divided by the frac-

tional contribution of the principal isotope to the total isotope

distribution. For simplification only the isotope distribution of

the metal content of the respective fragments is considered.

The main problem with these estimations is that we do not have

any information on the fragmentation of the neutral counter-

parts; this is especially true for DI where we have no informa-

tion on the available excess energy.

To account for this, we have calculated a lower limit and a

higher limit for the CO loss from H2FeRu3(CO)13 per incident,

both for the DI and the DEA process. For the lower limit in DI

we presume the high m/z regressions to be associated with

neutral iron loss as neutral Fe(CO)4, i.e., loss of the apex iron

with both the bridging carbonyls and both terminal carbonyls.

For the [Fe(CO)n]+ regression we presume that the neutral

counterpart stays intact. For the higher limit we presume that

the high m/z ratios are not associated with iron loss and that the

neutral counterparts to the [Fe(CO)n]+ regression fragment

through complete CO loss. Similarly, for DEA we estimate the

upper limit by assuming additional CO loss from the neutral

counterparts formed in the individual processes. However, here
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Figure 8: Electron impact ionization spectra of H2FeRu3(CO)13 recorded at electron energy of 70 eV, upper panel shows the positive ion fragments
formed in the mass range 50 to 315 amu and the lower panel shows positive ion fragments in the mass range 280 to 670 amu. The label M in the
figure is used for H2FeRu3(CO)13.

we have a fair estimation of the excess energy available as we

have calculated the thermochemical thresholds for the indi-

vidual processes. For the neutral Fe(CO)4 and Ru(CO)4 loss and

additional CO loss the onset of the individual contributions is

mostly close to the calculated thermochemical threshold of the

individual processes, but the respective contributions generally

stretch over a range of about 4–5 eV. On the high energy side of

the respective contribution, further loss of 2–3 CO from the

respective metal neutral tetracarbonyl is thus in principle

possible. Accordingly, we calculate the lower limit for CO loss

through DEA by presuming the intact neutral Fe and Ru

carbonyls (mainly tetracarbonyls). For the higher limit we

simply presume additional loss of two CO from these.

From these estimations we derive the bracketing numbers 0.5–3

for CO loss from H2FeRu3(CO)13 per incident through DEA

and 3–9 for DI. In this context we note that all DEA channels

are associated with metal–metal bond ruptures, while in DI

this number is somewhere between 50–100% depending

on how large a fraction of the m/z ratios matching the

[M – nCO]+ regression are actually due to the formation of

[M – Fe – (n − 2)CO]+. For HFeCo3(CO)12 the same estima-

tions give the bracketing numbers 4–9 for CO loss per incident

through DI and 2–3 for DEA, while metal–metal bond rupture

constitutes 50% of the DI intensity and about 30% of the DEA

intensity.

Finally, we emphasize that we are only able to account for DEA

and DI in the current experiments and we are blind to all frag-

mentation caused by neutral dissociation upon electron excita-

tion. For Pt(PF3)4, it has been shown that the cross sections for

electronic excitations are very significant [33] and it is reason-
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Figure 9: Evolution of O 1s, Fe 2p and Ru 3d/C 1s XPS regions of a H2FeRu3(CO)13 film exposed to electron doses up to 1.4 × 1018 e−/cm2.

able to assume that the cross sections for such fragmentation is

comparable to the fragmentation observed in DEA. This

assumption is derived from the notation that the underlying

electronic excitations correspond to the respective resonances

observed in DEA, i.e., a single particle resonance in DEA has a

corresponding one-hole one-particle resonance in electronic ex-

citation and the same is true for core excited one-hole two parti-

cle DEA resonances as well as the postulated multi-particle

resonances recently discussed in conjunction with CO loss from

HFeCo3(CO)12 through DEA [40]. In fact, in a theoretical study

of the excited states observed in the electron energy loss study

on Pt(PF3)4 [33], many of these states have been shown to be

dissociative, indicating a high ND efficiency for this molecule

[41].

Electron induced surface reactions of
H2FeRu3(CO)13
The surface reactions of adsorbed H2FeRu3(CO)13 molecules

were studied under UHV conditions (Pbase < 4 × 10−9 mbar).

Ultra-thin (<2–3 nm) H2FeRu3(CO)13 films were deposited

onto a cooled, sputter-cleaned Au substrate before being

exposed to 500 eV incident electrons generated by a commer-

cial flood gun. The effect of electron irradiation on the adsorbed

H2FeRu3(CO)13 molecules as monitored in situ by X-ray photo-

electron spectroscopy (XPS) and mass spectrometry.

Figure 9 shows the evolution of the O 1s, Fe 2p and Ru 3d/C 1s

XPS regions of a nanometer-thick film of H2FeRu3(CO)13

adsorbed onto a gold substrate at 213 K, plotted as a function of

increasing electron dose. Area analysis reveals that prior to

electron irradiation, the O/Ru ratio is ≈4.8 and the O/Fe ratio is

≈14.5. These measured O/Ru and O/Fe ratios, in addition to the

absence of any peaks in the O 1s or C 1s regions that would be

indicative of CO decomposition, support the idea that upon

deposition at 213 K the precursor is molecularly intact prior to

electron irradiation.

Prior to electron irradiation, the O 1s region consists of two

peaks centered at 534.5 and 540.6 eV, which can be ascribed to

the O 1s peak and the higher binding energy/lower intensity

π–π* shake up features associated with CO ligands, respective-

ly [78,79]. Electron irradiation produces a significant decrease

in intensity within the O 1s XPS region for electron doses

<≈5 × 1016 e−/cm2, although thereafter it remains relatively

constant in peak position and intensity. During the course of ir-

radiation there is no evidence of oxide formation, which would

be expected to produce an asymmetric profile with a peak posi-

tion at ≈530.5 eV [80].

In the Fe 2p region two peaks are observed prior to electron ir-

radiation, which correspond to the Fe 2p3/2 and Fe 2p1/2 transi-

tions of H2FeRu3(CO)13, centered at 709.1 eV and 722.3 eV re-

spectively. Upon electron irradiation, there is a decrease in the

Fe 2p peak energy (≈0.6 eV) accompanied by a change in the

spectral profile from a fairly symmetric peak, indicative of iron

atoms in a molecular entity such as H2FeRu3(CO)13, to a peak
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shape more indicative of metallic iron, likely caused by an

increase in the degree of metal-metal bonding between frag-

ments formed by the dissociation of the precursor and/or be-

tween fragments and the substrate. Careful analysis of the Fe 2p

region reveals that although there is a change in the peak shape

there is no statistically significant change in the integrated area

of the Fe 2p peaks.

In the Ru 3d/C 1s region, the spectral envelope can be fit with

three peaks prior to electron irradiation (fitting can be seen in

Figure S2, Supporting Information File 1). Peaks at 286.2 eV

and 282.2 eV correspond to the Ru 3d3/2 and Ru 3d5/2 transi-

tions respectively, while another peak centered at 287.7 eV

which appears as a shoulder to the higher binding energy side of

the Ru 3d5/2 peak can be ascribed to the C 1s peak of the CO

ligands [81]. It should be noted that the π–π* shake up feature

in the C 1s peak for CO ligands expected at ≈293.2 eV was not

observed due to its low intensity. Upon electron irradiation, the

Ru 3d3/2 and Ru 3d5/2 peak positions shift measurably towards

a lower binding energy, and the CO peak decreases in intensity.

Spectral fitting of the Ru 3d/C 1s XPS region measured after an

electron irradiation of a dose of 1.4 × 1018 e−/cm2 reveals an

absence of any graphitic carbon (peak position 284.5 eV). As a

consequence of electron irradiation the Ru 3d5/2 peak shape

changes in a fashion analogous to that observed for the Fe 2p

peaks without any change in the integrated area of the Ru peaks.

Thus, electron irradiation does not cause any desorption of

metal from the adsorbed H2FeRu3(CO)13 film at these low tem-

peratures (≈213 K).

During XPS analysis, secondary electrons will be generated and

can also cause changes to the adsorbate molecules. As a result,

separate control studies were conducted to determine the effect

of X-ray irradiation alone on the adsorbate layer. Results from

these experiments are shown in Figure S3, Supporting Informa-

tion File 1, where a H2FeRu3(CO)13 film was continuously

exposed to X-rays and simultaneously analyzed using XPS.

Comparison with electron irradiated films reveal that X-ray irra-

diation produces the same changes as electron irradiation, but at

a much slower rate. Based on the variation in the O 1s area we

estimate that the time taken to acquire one XPS scan of the

O 1s, Fe 2p and C 1s/Ru 3d regions corresponds to an electron

dose of ≈6.3 × 1014 e−/cm2. Consequently, the effect of X-ray

irradiation during the experiments described in Figure 9 is

minimal except for the lowest electron doses, where the

measured dose based on electron irradiation alone is somewhat

underrepresented.

Figure 10 shows that the fractional decrease in the coverage of

oxygen atoms and the change in Ru 3d5/2 binding energies both

follow a similar dependence on the electron dose; specifically,

they both decrease significantly for comparatively low electron

doses (<≈6 × 1016 e−/cm2), but remain constant thereafter. In

the case of the Ru 3d5/2 peak the binding energy decreases

systematically from 282.2 eV initially to 280.6 eV (close to the

Ru metal binding energy of 280.1 eV) after an electron dose of

≈6 × 1016 e−/cm2, implying a partial reduction of Ru in the de-

composition process. Over the course of the same electron dose

the fractional coverage of oxygen atoms is reduced by ≈70% of

its initial value.

Figure 10: Change in fractional coverage of oxygen atoms (red stars)
and, Ru 3d5/2 peak position (blue open circle) for H2FeRu3(CO)13
films. Both are plotted as a function of electron dose.

Figure 11 shows the mass spectrum recorded during the elec-

tron irradiation (dose ≈1.2 × 1017 e−/cm2) of a H2FeRu3(CO)13

film. The only signals observed were at m/z 12 (C), 16 (O) and

28 (CO), along with some hydrogen and residual water vapor in

the UHV chamber.

Figure 11: Mass spectrum of neutral gas phase species desorbed
from an H2FeRu3(CO)13 film during the course of an electron dose
≈1.2 × 1017 e−/cm2.

Figure 12 shows the evolution of the O 1s, Fe 2p and Ru 3d/

C 1s XPS regions of a H2FeRu3(CO)13 film adsorbed at 213 K

(bottom set of spectra), after exposure to an electron dose of

1.3 × 1017 e−/cm2 (middle spectra) and then subsequently
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Figure 12: Changes in O 1s, Fe 2p and Ru 3d/C 1s XPS regions when an H2FeRu3(CO)13 film was exposed to electron dose of 1.3 × 1017 e−/cm2

(middle set of spectra) and then subsequently heated to room temperature (298 K) (uppermost set of spectra).

annealed to RT (298 K) (topmost spectra). An initial electron

dose of 1.3 × 1017 e−/cm2 was chosen because it closely corre-

sponds to the minimum electron dose required to complete the

initial stage of the reaction, in the regime where changes were

observed in both the coverage of oxygen-containing species and

the Ru peak position (see Figure 9 and Figure 10). In Figure 12

the changes in the O 1s, Fe 2p and Ru 3d/C 1s XPS regions for

this electron dose (1.3 × 1017 e−/cm2) are seen to be similar to

those shown in Figure 9, with the dominant effects being the

loss of signal intensity in the O 1s region (≈70% of its initial

value) and a decrease of ≈1.6 eV in the binding energy of the

Ru atoms. Upon annealing this irradiated film to RT, the O 1s

area decreased by a relative small amount (≈22% in intensity)

but did not disappear; moreover, a slight shoulder was still

visible on the higher binding energy side of the Ru 3d3/2 peak,

supporting the idea of some residual CO ligands. No change

was observed in the Ru 3d peak positions although there is a

suggestion of slight broadening in the Fe 2p region.

Discussion of surface science results: Previous UHV-surface

science studies on organometallic precursors have shown that

the initial step in FEBID involves electron stimulated decompo-

sition of the precursor accompanied by ligand desorption

[43,44,46,49,50]. This causes the deposition of non-volatile

metal-containing fragments that become incorporated into the

deposit. In the present study, analysis of Figure 9 and Figure 10

reveals that this initial decomposition/deposition step is com-

plete for electron doses on the order of 1.0 × 1017 e−/cm2 where

the fraction of CO ligands present in the H2FeRu3(CO)13 film is

reduced to about 30% of its initial value. This is evidenced by

the decrease in intensity within the O 1s region and the evolu-

tion of CO detected by MS (Figure 11). Further, this electron

stimulated H2FeRu3(CO)13 decomposition leads to decrease in

the binding energy of the Fe 2p3/2 (709.1 to 708.5 eV) and

Ru 3d5/2 (from 282.2 to 280.6 eV) peaks as the metal atoms are

reduced; indeed, the Ru 3d5/2 binding energy of 280.6 eV after

irradiation is close to the binding energy of Ru metal

(280.1 eV), suggesting extensive CO desorption from the Ru

atoms.

When comparing the extent of CO desorption from

H2FeRu3(CO)13 [82] during the electron stimulated decomposi-

tion, it is apparent from Figure 10 that 65–70% of the CO

groups present in the precursor desorb in the initial decomposi-

tion step. Based on the precursor’s stoichiometry we can there-

fore estimate that on average 8–9 of the 13 CO ligands present

in H2FeRu3(CO)13 desorb during its electron stimulated decom-

position. From the gas phase experiments described earlier we

infer that the average CO loss per incident through DI is in the

range from about 3–9. Similar analysis of the gas phase DEA

data results in an average of 0.5 for the lower bound and 3 for

the upper bound of CO loss through decomposition of

H2FeRu3(CO)13 upon electron attachment. These two pro-

cesses, along with neutral dissociation upon electron excitation,

are expected to be responsible for the bulk of precursor decom-

position in FEBID. Unfortunately, the extent of ND and the

product formation in ND of FEBID precursors cannot be deter-

mined with currently available instruments, though the first

steps in this direction have recently been taken [83]. However,

as discussed in the gas phase section of this contribution we

expect the extent of decomposition through neutral dissociation

(ND) to be similar to that through dissociative electron attach-

ment (DEA), rather than dissociative ionization (DI). From the

comparison of the gas phase and surface data we thus expect DI

to dominate the initial electron induced decomposition process

observed for H2FeRu3(CO)13. However, it should be noted that
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Figure 13: Initial decomposition/deposition of surface adsorbed H2FeRu3(CO)13 precursor, mediated by dissociative ionization. The mixture of
partially decarbonylated intermediates shown on the right side represents the statistical nature of DI, each generated by the loss of a different number
of CO groups from the parent molecule.

the initial fragmentation of the precursor through DEA or DI

could be followed by subsequent surface induced fragmenta-

tion, which cannot be excluded.

During precursor decomposition, CO desorption occurs in the

absence of any CO decomposition, which previous studies have

shown would lead to the appearance of a lower binding energy

peak in the O 1s region (see Figure 9) as oxides are formed.

Consequently, we can conclude that the parent H2FeRu3(CO)13

molecules are initially converted into partially decarbonylated,

surface bound intermediates as shown in Figure 13. This

schematic also highlights the fact that DI is an inherently statis-

tical process. As a result, we do not expect that a single partially

decarbonylated intermediate is formed, but rather a distribution

of H2FeRu3(CO)x species with an average stoichiometry of

H2FeRu3(CO)x (x = 4.5). Unfortunately, XPS cannot detect

hydrogen and H2 is a ubiquitous background gas in UHV cham-

bers. As a result, the surface science studies do not provide any

insights into the fate of the hydrogen atoms in the precursor.

Fate of the partially decarbonylated intermediate: In

FEBID, deposition is typically conducted in an electron micro-

scope at ambient temperatures under steady state conditions,

where the partially decarbonylated intermediates formed by the

decomposition of the precursors will be subjected either to the

effects of further electron beam irradiation and/or undergo ther-

mally stimulated reactions. In the UHV-surface science studies

we can independently probe the fate of the partially decarbony-

lated intermediates towards further electron beam irradiation as

well as their thermal stability at ambient temperatures.

Stability towards further electron irradiation: After an elec-

tron dose of ≈1 × 1017 e−/cm2 essentially all of the parent pre-

cursor molecules have undergone electron stimulated decompo-

sition as evidenced by the absence of any Ru 3d5/2 peak at

282.2 eV associated with the parent compound as well as the

invariance of the Ru 3d spectral envelope for electron doses in

excess of ≈1 × 1017 e−/cm2. At this stage the precursor mole-

cules have been converted into partially decarbonylated frag-

ments as shown in Figure 13 with an average stoichiometry of

H2FeRu3(CO)4.5. The XPS results shown in Figure 9 and

Figure 10 for electron doses >≈1 × 1017 e−/cm2 therefore reflect

the effect of further electron irradiation on these partially decar-

bonylated fragments. In typical FEBID experiments, surface

bound intermediates will often be exposed to the effects of elec-

tron irradiation, as deposition occurs in the presences of a con-

stant flux of electrons. Analysis of XPS data for electron doses

>≈1 × 1017 e−/cm2 revealed no noticeable changes in the O 1s,

Fe 2p and Ru 3d/C 1s regions. This suggests that the CO

ligands of these partially decarbonylated intermediates are rela-

tively stable towards electron irradiation. This is in contrast to

previous studies of CO-containing FEBID precursors (e.g.,

W(CO)6 [43]) where the partially decarbonylated intermediates

formed as the precursor decomposed were susceptible to elec-

tron induced decomposition of the CO ligands and the subse-

quent formation of metal oxides and graphitic carbon

(M(CO)y(ads) + e− → MO(ads) + C(ads)). The reasons for the

apparent stability of the CO ligands in the H2FeRu3(CO)x

(x = 4,5) intermediates is unclear and somewhat surprising. In

the context of its influence on the metal content in FEBID struc-

tures, however, the apparent persistence of these CO ligands

under the influence of electron irradiation is no different to the

effect of CO decomposition as both routes will cause the associ-

ated carbon and oxygen atoms to remain in the deposit as it

grows.

Thermal stability: In contrast to the low temperature (213 K)

UHV surface science studies where experiments in this study

are principally conducted, FEBID occurs at ambient tempera-

tures (≈298 K). In FEBID, although the initial step must involve

electron mediated decomposition/deposition of the precursor,

the surface bound intermediates formed as a result of precursor

decomposition could subsequently react thermally. To assess

the potential for this to occur it is necessary to assess the ther-
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Figure 14: Schematic showing the incorporation of partially decarbonylated intermediate of H2FeRu3(CO)13 into the deposit in FEBID.

mal stability of the partially decarbonylated intermediates

generated from H2FeRu3(CO)13 .  Experimentally, we

accomplish this in Figure 12 using XPS by first exposing

H2FeRu3(CO)13 films to an electron dose sufficient to create the

partially decarbonylated intermediates, and then annealing these

species to RT. Analysis of Figure 12 reveals that there is loss of

some of the O 1s intensity (O 1s area reduced by ≈22%), but

most of the CO groups in the H2FeRu3(CO)x (x = 4,5) interme-

diates still remain with average stoichiometry of H2FeRu3(CO)x

(x = 3,4).

FEBID nanostructures made from H2FeRu3(CO)13 under steady

state conditions have metal contents <26 atom % as discussed

vide infra. From the surface science results discussed so far, it is

clear that the partially decarbonylated intermediates generated

from H2FeRu3(CO)13 (H2FeRu3(CO)x) will not change signifi-

cantly in terms of their chemical composition, regardless of

whether they are subject to the effects of further electron beam

irradiation (Figure 10) or thermal processing (Figure 12).

Consequently, most of the associated carbon and oxygen atoms

residual in the partially decarbonylated intermediates will be in-

corporated into the growing deposits. Indeed, the overall se-

quence of elementary reaction steps H2FeRu3(CO)13 precursor

molecules will experience in FEBID can be represented as:

H2FeRu3(CO)13 (physisorbed) + e− → H2FeRu3(CO)x (x = 4,5)

(chemisorbed) + 8.5 (CO)(g)↑

H2FeRu3(CO)x (x = 4,5) (chemisorbed) + e−/Δ → most CO

ligands are retained.

This overall process is shown schematically in Figure 14, where

the partially decarbonylated intermediates are incorporated into

the FEBID nanostructure. From the stoichiometry of the film

formed after irradiation and annealing of surface adsorbed

H2FeRu3(CO)13 film, one can estimate the metal content and

the estimated value is <31%. These values match very well with

the composition obtained in the current FEBID experiments

with H2FeRu3(CO)13. As is discussed in the next section the

metal content varies in the range 21 to 26 atom % with opti-

mized deposition parameters in FEBID of H2FeRu3(CO)13.

Related experiments on the electron induced decomposition of

surface adsorbed HFeCo3(CO)12 indicate a similar behavior

with regards to the initial electron induced decomposition.

However, for HFeCo3(CO)12, thermal CO desorption from

the partially decarbonylated intermediates is essentially

complete at room temperature, in contrast to the behavior of

H2FeRu3(CO)13 [80].

Focused electron beam induced deposition
of H2FeRu3(CO)13
Heteronuclear precursors are attractive for FEBID of alloys and

intermetallic compounds, in particular, if the deposit metal com-

position is in accordance with the stoichiometric proportions of

the metal species in the precursor and if the precursor leads to

deposits which are, ideally, fully metallic.

Prominent applications fields are nanomagnetism, in particular

regarding the advent of 3D nanomagnetic structures [84,85], or

superconducting nanostructures for studying finite-size and

(quantum) phase slip effects or the direct writing of device

structures based on tunneling or Andreev reflection [86-88].

In recent work we have shown that HFeCo3(CO)12 is a rather

ideal precursor with regard to preserving the metal composition
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Table 1: Determination of the optimal gas injection system (GIS) temperature. For the confirmation of the precursor’s stability under heating, the
experiments were repeated after the precursor had once been heated to 338 K. The deposits were written with 5 keV, 1.6 nA, 20 nm pitch and a
dwell time of 1 µs. The chemical deposition was determined via EDX. Signal contributions from the substrate, Si/Si3N4, as visible by the spectral
contributions of Si, were taken out from the EDX quantification. LDFOV: lateral distance to the center of the field of view. DS: vertical distance to the
substrate.

Temperature (K) GIS Chemical composition (atom %)
LDFOV (µm) DS (µm) C O Fe Ru

1st experiment: first heating of precursor after initial precursor loading
313 90 100 23.4 75.5 0 1.1
315 90 100 30.3 67.8 0.3 1.6
323 90 100 35.1 62.3 0.4 2.2
338 65 110 40.9 51.4 1.6 6.1
2nd experiment: heating after initial precursor conditioning up to 65 °C
298 103 85 24.7 75.0 0.3 0.0
303 100 90 17.8 82.0 0.2 0.0
313 104 85 27.0 72.2 0.8 0.0
323 101 90 27.0 69.6 1.1 2.3
333 100 93 43.8 42.7 3.0 10.5
338 100 80 44.4 34.4 4.7 16.5

in FEBID and leading to deposits with high metal content (typi-

cally above 80 atom %) for a wide range of deposition condi-

tions, in particular those which are suitable for high-resolution

structure formation [66].

In the following we present new results concerning the perfor-

mance of H2FeRu3(CO)13 as precursor in FEBID and compare

this to our previous results on HFeCo3(CO)12.

Dependence of gas flux on deposit composition for

H2FeRu3(CO)13: In a first series of experiments we followed

the evolution of the deposits’ composition as we increased the

precursor temperature in several discrete steps under otherwise

fixed deposition conditions of 5 keV beam energy and 1.6 nA

beam current. The pitch was set to 20 nm in both, x and y direc-

tion, and the dwell time was fixed to 1 µs. In Table 1 we present

an overview of the composition evolution for different precur-

sor temperatures in the first-time heating process after the initial

precursor loading, and in a follow-up experiment, when the pre-

cursor had already reached the highest temperature of 338 K

accessible in our setup. In these experiments we also varied the

distance of the gas injection capillary to the substrate surface

and the field of view.

From the data presented in Table 1 it is apparent that the highest

metal content is obtained for the highest precursor flux, i.e., at

338 K. This is in clear correspondence to HFeCo3(CO)12 for

which sufficient precursor flux can also only be obtained above

333 K. However, already at this stage a clear difference to

HFeCo3(CO)12 is noticeable. Even at the highest flux the

overall metal content of Fe–Ru does only reach 21 atom %,

which is far below the typical value of 80 atom % of Fe–Co

under the beam conditions employed here.

FEBID growth optimization: In a next step the FEBID

process was optimized with regard to the metal composition by

varying the beam current, x and y pitches and the dwell time.

This was done with support from a semi-automatic non-linear

optimization routine using a genetic algorithm (GA), as de-

scribed in [89]. As a general trend, from the GA we find short

dwell times and rather large pitches to result in the highest

conductance for the deposits. A more detailed account is given

in Table 2, which summarizes the results for a subset of the

growth conditions investigated in this work.

Three main results can be stated using H2FeRu3(CO)13: (i) The

largest metal content for carefully optimized deposits does not

reach beyond 26 atom %, which is significantly higher than the

metal content obtained for other Ru-based precursors (≈10%)

[61] but also very low when compared to HFeCo3(CO)12

(>80 atom %) [66]. (ii) The resistivity, however, is not lowest

for the highest metal content but reaches its minimum for

[Fe–Ru] ≈21 atom %, namely about 2.5 Ω·cm. (iii) There is a

significant variation in the Ru-to-Fe ratio, reaching from 2.7 to

4.3. This is again in stark contrast to our observations for

deposits obtained from HFeCo3(CO)12 for which the lowest

resistivities, of below 100 µΩ·cm, nicely correlate with the

largest metal content. Moreover, the large resistivity values of

the Fe–Ru deposits clearly indicate that these are not metallic

but are in the thermally-assisted tunneling regime; see [90] for a

discussion of the electronic transport regimes of nanogranular

FEBID materials. This is also clearly seen in the temperature-



Beilstein J. Nanotechnol. 2018, 9, 555–579.

572

Table 2: Overview of sample composition and room-temperature resistivity employing a set of standard writing parameters, as well as optimized pa-
rameters, as indicated. For the EDX experiments dedicated reference structures of sufficient thickness were fabricated. For these we employed the
same deposition parameters as for the structures used for the transport measurements.

Current (nA) Dwell time (µs) x pitch (nm) y pitch (nm) Chemical composition resistivity (Ω·cm)
C O Fe Ru

standard writing parameters
1.6 0.2 20 20 51.7 32.3 3.6 12.4 1.8 × 105

1.6 1 20 20 49.2 41.6 1.9 7.3 9.2 × 103

1.6 100 20 20 47.9 41.0 2.1 9.0 650
1.6 500 20 20 53.0 37.5 2.5 7.0 332
6.3 0.2 20 20 52.8 28.4 5.1 13.7 135
6.3 1 20 20 48.1 29.8 5.4 16.7 45.6
6.3 100 20 20 49.6 25.8 5.2 19.4 57.3
6.3 500 20 20 49.5 24.2 5.1 21.2 70.7
optimized writing parameters
1.6 0.3 80 74 40.5 36.5 4.7 18.3 2.55
1.6 3.7 80 74 42.2 33.9 5.1 18.8 4.38
6.3 0.4 29 31 37.8 40.8 5.0 16.4 2.46
6.3 1.1 29 31 40.5 38.7 4.3 16.5 3.66

Figure 15: (a) AFM cross sections of deposits shown in the SEM micrograph (b) at the positions indicated by the black bars. The deposits were
written with 5 keV, 6.3 nA and 20 nm pitch. The lateral shape of the patterns was set to be rectangular of size 6 × 2 µm2. For short dwell time (200 ns)
the deposit’s dimensions exceed the pattern size by about a factor of two due to co-deposit formation.

dependent conductivity, which we discuss in the last part of this

section. We conclude this paragraph by commenting on the ob-

served strong variability of the Ru-to-Fe ratio. Here significant

deviations from the 3-to-1 ratio expected from the precursor

composition are observed. In most instances the ratio exceeds 3,

which indicates a partial loss of Fe during the dissociation and

fragment desorption processes at work in FEBID for this pre-

cursor. With a view to the results from the gas phase experi-

ments, this may be a consequence of the significant apex loss as

neutral Fe(CO)4 in H2FeRu3(CO)13, as apparent in the current

gas phase studies while the loss of anionic Fe(CO)4
− is the

predominant apex loss channel in HFeCo3(CO)12. Furthermore

metal–metal bond rupture, to a large extent through apex loss, is

a pre-requisite for further fragmentation of H2FeRu3(CO)13 in

the gas phase, but is only a parallel process to sequential CO

loss in HFeCo3(CO)12.

Deposit morphology and co-deposit formation: Utilizing the

deposition parameters from the optimization process described

in the previous paragraph, we have fabricated rectangular refer-

ence structures for getting insight into the morphology of the

deposits and the manifestation of co-deposits. In Figure 15a we
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Figure 16: Transport measurements of as-grown Fe–Ru deposit and deposits grown under identical conditions after being subjected to different elec-
tron post-growth treatments, as indicated. The samples irradiated for 1 h and 2 h show the highest room-temperature conductivities, associated with
the smallest reduction in conductivity as the temperature is lowered. Inset: Time-dependent evolution of the in situ conductivity as a sample is elec-
tron irradiated in the electron microscope after growth.

show AFM cross section profiles of two deposits defined as a

rectangle of size 6 × 2 µm2 for two different dwell times. The

beam parameters were set to 5 keV and 6.3 nA.

Considering the extremely pronounced edge bulging for the

short dwell time of 200 ns and the rounded shape for longer

dwell times (500 µs), we attribute these morphological changes

to a transition from a reaction-rate limited (RRL) to a mass-

transport limited (MTL) regime with increasing dwell time.

This is analogous to our previous results for the precursor

W(CO)6 described in [91]. For short dwell times the dish-shape

is particularly strongly pronounced and does in fact lead to a

lateral inflation of the targeted size by a factor of two. This indi-

cates that the morphological evolution is not only the conse-

quence of the RRL growth regime but also of a strongly pro-

nounced co-deposit formation. This is again in stark contrast to

our observations regarding the deposit shape of Fe–Co struc-

tures obtained from HFeCo3(CO)12. Here we find only very

small co-deposit contributions and nice shape fidelity under

growth conditions optimized for both high metal content and

high-resolution writing.

Electronic transport regime of Fe–Ru FEBID structures: In

the last part of this section we briefly summarize our observa-

tions regarding the temperature-dependent conductivity of

Fe-Ru FEBID nanostripes optimized for high metal content and

being subject to a sequence of electron irradiation steps. For

nanogranular Pt FEBID structures, post-growth irradiation has

been shown to be very efficient in increasing the conductivity

by up to four orders of magnitude, even up to the transition

from a thermally assisted tunneling regime to a metallic trans-

port regime [92,93]. In Figure 16 we show the temperature-de-

pendent conductivity of Fe–Ru nanostripes prepared at 5 keV

and 6.3 nA beam energy and current, respectively. The dwell

time was set to 400 ns at a symmetric pitch of 80 nm.

As is apparent from the inset of Figure 16, the effect of post-

growth electron irradiation on the conductivity of Fe–Ru

deposits is noticeable, but even for extended irradiation times

(2 h) the increase is just below a factor of two. The main plot in

Figure 16 gives an overview of the overall temperature-depen-

dence of Fe–Ru nanostripes written under identical conditions

but being subject to irradiation times of 20 s up to 2 h. A com-

parison of any of the two as-grown reference structures with the

nanostripe irradiated for only 20 s indicates that the overall vari-

ability in the activation temperature of these semiconducting/

insulating deposits is rather large. The observation of a strongly

activated transport, dominated by tunneling, is again in clear
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contrast to our observations on Fe–Co from HFeCo3(CO)12, for

which we routinely observe metallic behavior, i.e., increasing

conductivity as the temperature is lowered, at room-tempera-

ture resistivity levels which are at least 4 orders of magnitude

lower than those observed for optimized Fe–Ru.

Conclusion
A comprehensive investigation of electron interactions with the

FEBID precursor H2FeRu3(CO)13 was conducted under differ-

ent experimental conditions, using gas phase and UHV surface-

based studies as well as focused electron beam induced deposi-

tion (FEBID).

In the current FEBID of H2FeRu3(CO)13, considerable effort

was given to optimize the resulting metal content of the deposit,

however, only a maximum metal content of about 26 atom %

was achieved. Moreover, the metal content was generally found

to be lower than 26 atom %. This is a quite poor performance

compared to the structurally similar precursor HFeCo3(CO)12,

where stoichiometric metal content of 80 atom % was routinely

achieved [66]. EDX analysis of the deposits also produced a

Ru/Fe ratio that was higher (average Ru/Fe ≈3.5:1) than the

stoichiometric ratio of 3:1 in the intact precursor.

In gas phase electron interaction with H2FeRu3(CO)13 all CO

loss through DEA is preceded by metal–metal bond ruptures,

with a significant apex loss in the form of neutral Fe(CO)4. In

DI, metal–metal bond rupture is also significant and is ob-

served for more than 50% of all dissociation events. The aver-

age CO loss from H2FeRu3(CO)13 through DI is found to be be-

tween 3 and 9 per incident and in DEA these numbers are about

0.5 to 3. In the surface experiments, decomposition of the

parent molecules leads to an average loss of 8–9 CO groups and

the formation of partially decarbonylated intermediates. The

partially decarbonylated intermediates (average stoichiometry

H2FeRu3(CO)4.5) formed as a result of the precursor’s decom-

position are relatively unaffected by further electron irradiation

or thermal annealing to room temperature (where typical

FEBID experiments are conducted).

Comparing the extent of the CO loss through DEA and DI in

the gas phase experiments with the observed CO loss in the sur-

face experiments indicates that DI, rather than DEA is the dom-

inating process for this precursor. However, we note that ND is

not accounted for in current gas phase experiments and this

process may be significant. Fragmentation through ND is ex-

pected to be more similar to DEA than DI, and should be mani-

fested in a similar extent of CO loss. The fact that no desorp-

tion of metal containing fragments is observed in the surface

experiments despite the fact that these dominate the gas

phase fragmentation observed may readily be explained

by the low substrate temperature in the surface experiments

(213 K).

The main difference in the gas phase fragmentation of

H2FeRu3(CO)13 as compared to HFeCo3(CO)12 is the signifi-

cantly more pronounced metal–metal bond ruptures observed

for H2FeRu3(CO)13. Especially the apparently significant apex

loss through the formation of neutral Fe(CO)4 is of interest as

this fragment could desorb at room temperature during FEBID.

Related surface studies on HFeCo3(CO)12 reveal that the

initial electron induced decomposition of this precursor is

similar to that of H2FeRu3(CO)13. However, post exposure

annealing to room temperature apparently allows for more effi-

cient removal of the remaining CO ligands from HFeCo3(CO)12

than is the case for H2FeRu3(CO)13 [80].

With the observations from the surface science and gas phase

studies we can attribute the low metal content achieved with

H2FeRu3(CO)13 predominantly to the persistence of the CO

ligands that remain after the initial electron induced decomposi-

tion. Id est, for H2FeRu3(CO)13 these are not effectively re-

moved through annealing to room temperature in the surface

experiments. Consequently, the associated carbon and oxygen

atoms are likely to be incorporated in FEBID nanostructures,

decreasing the metal content. Moreover, the final metal content

of the deposits observed for H2FeRu3(CO)13 in the surface ex-

periments is very similar to that achieved in FEBID under

optimal conditions, i.e., 31 vs 26 atom %. The vapor pressure of

H2FeRu3(CO)13 is also very low in FEBID experiments as

compared to the background gases. This will increase the rela-

tive importance of deposition from background gases, which

likely explains the observation that the metal content was often

significantly less than the maximum value of 26 atom % ob-

served. Gas phase studies suggest that the slight increase in the

Ru/Fe ratio of deposits from that of the molecular stoichiome-

try, could be a reflection of the desorption of neutral, iron con-

taining ligands, predominantly Fe(CO)4.

Experimental
Preparation of the heterometallic carbonyl precursors was

conducted through modified procedures described in references

[94,95]. Our modified procedure for HFeCo3(CO)12 has been

described in the literature [66], while the procedure for the syn-

thesis of H2FeRu3(CO)13 was conducted as follows (CIF file

with refined data for H2FeRu3(CO)13 can be provided upon

request).

All handling and synthesis procedures were carried out under

inert atmosphere using Schlenk and glove box techniques to

prevent oxidation. Fe(CO)5, Ru3(CO)12, H3PO4, benzene,

hexane, 1,4-dioxane, and acetone were purchased from Sigma
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Aldrich. All solvents were deoxygenated before use.

Na2[Fe(CO)4] is formed by reduction of Fe(CO)5 in THF using

a sodium/benzophenone mixture as described in literature [96].

The solid product is filtered, washed with hexane, dried under

vacuum and stored in a glovebox. In a typical synthesis, 200 mg

Ru3(CO)12 in 70 mL THF was added dropwise to a refluxing

solution of 140 mg Na2[Fe(CO)4] in 80 mL THF. The colorless

solution turned red upon the first addition of Ru3(CO)12 and

was refluxed for additional 75 min after complete mixing of the

compounds. The solvent was subsequently removed from the

solution under reduced pressure. Hexane was added to the

residue and further addition of 30 mL 20% H3PO4 led to a

coloration of the hexane phase due to phase transfer. The

organic phase was pipetted in another flask containing an-

hydrous MgSO4, filtered and concentrated under reduced pres-

sure. The concentrate was chromatographically purified under

argon atmosphere using silica gel (column length 30 cm;

Ø 3 cm) and hexane as eluent with the column length being

sufficient to clearly separate the different fractions containing

other metal carbonyls. Three fractions of distinct color (yellow,

green and purple) were eluted with hexane and discarded. The

red product was finally stripped from the column using benzene

and the solvent was removed. The crude product was crystal-

l ized from hexane to obtain sheet- l ike crystals  of

H2FeRu3(CO)13, which were dried under reduced pressure.
1H NMR identified a small concentration of impurity hexanes

with very low concentration in a saturated solution. These are

however removed under reduced pressure. Crystals were

checked by single crystal XRD (with R = 2.8%) without any

solvent molecules incorporated in the crystals. Unit cell param-

eters were determined for different crystals and gave the same

results. IR spectra are recorded, and were found to be in

accordance with literature data. The thermal stability of

H2FeRu3(CO)13 was investigated by thermogravimety with a

heating rate of 5 K·min−1. The onset of thermal decomposition

for the precursor is at ≈390 K. Since the stability at elevated

temperatures is important for the evaporation of the precursor,

isotherms at different temperatures under nitrogen were re-

corded. The most important one for the evaporation procedure

showed a mass loss of <1.5% during heating for 4 h at 343 K.

Gas phase experiments were conducted in a crossed electron/

molecular beam instrument under single collision condition. A

full description of the experimental setup can be found in [97]

and thus only a brief description is given here. An electron

beam with energy resolution of ≈110 meV was generated using

a trochoidal electron monochromator and crossed with an effu-

sive beam of H2FeRu3(CO)13 produced by subliming the pre-

cursor molecule into the collision chamber through a capillary

tube. The flow of the molecular beam can be precisely con-

trolled with a leak valve. Prior to the measurement, the back-

ground pressure of the collision chamber was ≈6 × 10−8 mbar.

With heating of the inlet system to 338–343 K, the precursor

pressure increased to 2–4 × 10−7 mbar. In order to avoid

charging of the electrical lense components of the monochro-

mator due to condensation on its surfaces, the monochromator

was maintained at a temperature of about 393 K. The electron

energy scale was calibrated based on the SF6
−/SF6 formation at

0 eV and the energy resolution of the electron beam was esti-

mated from the FWHM of the SF6
−/SF6 signal at 0 eV. Both

positive and negative ions formed by the interaction of elec-

trons with H2FeRu3(CO)13 were analyzed and detected using a

quadrupole mass spectrometer (Hiden EPIC1000).

Compared to HFeCo3(CO)12 the handling of H2FeRu3(CO)13

was more demanding. Maintaining sufficient pressure for

acceptable signal to noise ratios and acquisition times required

temperatures above 338 K, preferably higher, while heating

above 348–353 K caused decomposition of H2FeRu3(CO)13

(identified by decrease of relevant fragment ion signals). For

HFeCo3(CO)12, on the other hand, it was easy to maintain suffi-

cient working pressure and no change in the behavior of this

compound was observed, even at temperatures as high as

358 K.

The quantum chemical calculations of the thermochemical

thresholds for the negative ion fragment formation were per-

formed using the ORCA computational chemistry software

[98]. In most of the calculations we tried multiple ways of

removing CO ligands and other respective fragments, then for

each possibility we optimized the structures at the BP86

[99,100] /def2-TZVP [76] level of theory to the most probable

minimum energy structure. However, it was not practical to

consider all possible structures. After geometry optimizations,

the single point energies were calculated with the hybrid DFT

functional PBE0 [75,76] and the basis set ma-def2-TZVP

[76,77]. The energetics and threshold calculations reported in

the current work are the best optimized values obtained in our

quantum chemical calculations. Since the H2FeRu3(CO)13 pre-

cursor molecule was heated during the experiments, we

included the thermal energy of the neutral molecule in the

calculations (at 343 K the calculated thermal energy of

H2FeRu3(CO)13 is 1.16 eV). We note, that this is the most prob-

able internal energy and does not account for the actual

Maxwell–Boltzmann distribution of internal energies at the cur-

rent temperature. The molecular orbitals and spin density of

H2FeRu3(CO)13 were plotted using VMD [101].

The surface science experiments were performed in a UHV-

chamber equipped with XPS and MS (more details can be found

in [44,102]). A gold substrate was used because it is chemically

inert and because there are no Au XPS or AES peaks which
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overlap with any Ru 3d/C 1s, Fe 2p or O 1s XPS peaks. Prior

to each experiment, the Au surface was cleaned by sputtering

wi th  4  keV Ar+  ions .  To  crea te  H2FeRu3 (CO)1 3

films, H2FeRu3(CO)13 was sublimed into the UHV-chamber

from a glass finger through heating to 338–343 K. The heating

increased the chamber pressure from ≈9 × 10−9 mbar to

≈4 × 10−7 mbar. H2FeRu3(CO)13 was deposited onto a cooled

(153 K) Au substrate. To get sufficiently thick films, it was

necessary to dose the precursor continuously for 4 h. The thick-

ness of the film was determined from the attenuation of the

Au 4f XPS signal, using an inelastic mean free path of 2 nm for

the Au 4f photoelectrons [103]. Typical H2FeRu3(CO)13 film

thickness ranged from 1.1 to 1.4 nm. Based on the effective size

of the H2FeRu3(CO)13 molecule (estimated from the computed

structure of H2FeRu3(CO)13) this film thickness corresponds to

1 to 2 monolayers. The composition of the film was determined

from analysis of the Ru 3d/C 1s, Fe 2p and O 1s XPS transi-

tions.

Following deposition, the substrate temperature was increased

from 153 K to 213 K to ensure that any co-adsorbed water had

desorbed prior to electron irradiation. A commercial flood gun

(Spec FG 15/40) was used to irradiate the adsorbed film of

H2FeRu3(CO)13. For all surface science experiments, we used

an electron energy of 500 eV. This value corresponds to the

sum of the flood gun's electron energy and a positive bias of

+20 eV applied to prevent the escape of secondary electrons

generated in the surface by the impact of primary electrons.

Electron flux was measured based on the target current, which

was held constant during a particular experiment by adjusting

the electron current as needed. Changes in the film’s composi-

tion and bonding as a result of electron irradiation were deter-

mined by measuring the Ru 3d/C 1s, Fe 2p and O 1s transitions

in terms of electron dose (electron dose = target current × expo-

sure time).

All XPS data were recorded with a PHI 5400 XPS using Mg Kα

X-rays (hν = 1253.6 eV). The measured spectra were de-convo-

luted using commercial software CASA XPS. The Ru 3d/C 1s,

Fe 2p and O 1s regions were calibrated by aligning the

measured Au 4f7/2 substrate XPS peak to 84 eV. Gas phase

species which desorbed from the surface as a result of electron

irradiation were monitored using a quadrupole mass spectrome-

ter (Stanford research system, 0 to 200 amu).

The FEBID experiments were performed in a dual beam

microscope (FEI Nova NanoLab 600) equipped with a Schottky

electron emitter. The base pressure of the system was

4 × 10−6 mbar. An Omniprobe gas injector with inner diameter

of the capillary of 0.5 mm was used. The distances of the capil-

lary to the substrate surface and the center of the field of view

was 100 µm (vertically) and 90 to 100 µm (laterally), respec-

tively. The precursor HFeCo3(CO)12 was heated to 337 K

leading to an increase of the chamber pressure by about

1 × 10−7 mbar. The precursor H2FeRu3(CO)13 was heated in

several steps up to 338 K leading to a hardly detectable increase

of the chamber pressure. The deposition experiments were done

on p-doped Si(100) substrates with native oxide, thermally

grown SiO2 (200 nm) or Si3N4 (100 nm). We did not observe

an appreciable influence of the different substrate materials on

the results of the deposition experiments. The substrate temper-

ature was 296 K for all deposition experiments. After some pre-

liminary experiments we set the beam energy to 5 keV for the

deposition experiments with H2FeRu3(CO)13, as we observed a

strong reduction in both deposition yield and metal content at

higher beam energies. For HFeCo3(CO)12 we have shown in

previous work that high metal contents can be obtained for a

wide range of beam energies and currents [66].

Energy-dispersive X-ray analysis (EDX) experiments were per-

formed in situ directly after growth at 5 keV beam energy and

1 nA beam current.

Transport measurements were performed in the temperature

range from 2 to 300 K under fixed bias voltage conditions in

two- or four-probe configuration, employing Cr/Au electrode

structures prepared by dc magnetron sputtering and standard

UV lithography.

Atomic force microscopy (Nanosurf EasyScan 2) in dynamic,

non-contact mode was done on selected samples.
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