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Abstract
A detailed theoretical study of the optical absorption in doped self-assembled quantum dots is presented. A rigorous atomistic strain

model as well as a sophisticated 20-band tight-binding model are used to ensure accurate prediction of the single particle states in

these devices. We also show that for doped quantum dots, many-particle configuration interaction is also critical to accurately

capture the optical transitions of the system. The sophisticated models presented in this work reproduce the experimental results for

both undoped and doped quantum dot systems. The effects of alloy mole fraction of the strain controlling layer and quantum dot

dimensions are discussed. Increasing the mole fraction of the strain controlling layer leads to a lower energy gap and a larger

absorption wavelength. Surprisingly, the absorption wavelength is highly sensitive to the changes in the diameter, but almost insen-

sitive to the changes in dot height. This behavior is explained by a detailed sensitivity analysis of different factors affecting the

optical transition energy.
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Introduction
Self-assembled quantum dots are employed as light absorbers in

many optoelectronic devices, such as quantum-dot infrared

photodetectors (QDIPs) [1,2], and intermediate-band solar cells

(IBSCs) [3,4]. The optical properties of quantum dots (QDs)

can be tuned through shape, dimensions and composition of the

dots making them attractive for optoelectronic applications.

Moreover, their sensitivity to normally incident light make them

advantageous over other nanostructures, such as quantum wells,

that are insensitive to normally incident light [2].

The absorption coefficient α(λ) of quantum dots is an important

parameter that needs to be precisely designed for the proper

operation of these devices. An accurate model for the absorp-

tion coefficient α(λ) is therefore crucial in the design and

prediction of the device behavior. Therefore, this study aims to

fill the gaps in current absorption models, namely the atomistic

strain and band structure calculations that are needed for accu-

rate description of the bound states. Moreover, doped devices

require evaluation of many-particle configuration interaction

(CI) calculations for a proper treatment of the optical transi-

tions. The effects of alloy mole fraction of the strain controlling

layer and quantum dot dimensions are also discussed.

Self-assembled quantum dots have around 10% lattice strain

[5]. Atomistic strain models like that of Keating [6], or anhar-

monic models [7] are typically used to determine the relaxed

atom positions. The anharmonic strain model has additional

strain parameters with anharmonic corrections added to the

harmonic model, which improves its accuracy. Without anhar-

monic corrections, the harmonic potential underestimates the

repulsion at smaller bond lengths and also fails to capture the

weakening of atomic forces at large atomic separation [8].

The anharmonic strain parameters were originally optimized to

obtain correct Grüneisen parameters for accurate phonon dis-

persion calculations [7]. However, we show that the original pa-

rameter set cannot reproduce the experimental optical absorp-

tion peaks in quantum dots [9]. Using these parameters to deter-

mine strain in quantum wells does not agree with the well-

known analytical solution of strain in quantum wells. Optimiz-

ing the parameters to obtain correct biaxial strain ratios in quan-

tum wells is shown here to improve the accuracy of quantum

dot simulations as compared with experimental measurements.

The Hamiltonian is constructed with semi-empirical tight-

binding with 20-orbital sp3d5s* basis per atom, including

spin–orbit interaction (sp3d5s*_SO) [10]. The absorption coef-

ficient is calculated by employing Fermi’s golden rule.

In the following sections the simulated system and the numeri-

cal tools employed in simulations are described, then the theo-

retical aspects of the problem and optimization of the strain

model are discussed. Lastly, the results of the simulation are

presented including a sensitivity analysis of the absorption to

various quantum dot parameters.

Multi-Million-Atom Simulation
As shown in the Figure 1, the investigated QD system [11] has

a dome-shaped InAs quantum dot with a base diameter of

20 nm and a height of 5 nm. The wetting layer is two mono-

layers. The measured system has been doped with sheet doping

of two electrons per dot. The strain controlling layer is made of

In0.15Ga0.85As and is sandwiched between two layers of GaAs

each with a thickness of 1 nm. Next, there are two layers of

Al0.22Ga0.78As, each with a thickness of 2 nm. The rest of the

structure is made of Al0.07Ga0.93As. The dimensions of the

simulated QD systems are 60 nm × 60 nm × 60 nm. The strain

simulation contains around ten million atoms and the atomistic

grid is as shown in Figure 2.

Figure 1: A schematic of the measured and simulated QD system.
The dimensions of the simulated structure are 60 nm × 60 nm ×
60 nm. The quantum dot is dome-shaped InAs with a base diameter of
20 nm and a height of 5 nm, with a wetting layer of two monolayers.
The strain control layer of In0.15Ga0.85As is sandwiched between two
1 nm layers of GaAs, and two 2 nm layers of Al0.22Ga0.78As. The rest
of the structure is made of Al0.07Ga0.93As.

The band structure calculations do not need all of atoms to be

included in the simulation, since bound states decay exponen-

tially outside the quantum dot. The band structure calculations

are performed using a 40 nm × 40 nm × 20 nm box surround-

ing the quantum dot. This box contains only 1.5 million atoms.

Well-defined and well-calibrated tight-binding models are
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Figure 2: The atomistic grid of the simulated QD showing only cations
(Al,Ga,In) to emphasize the randomness of the simulated alloys. The
number of atoms used for the strain simulation is approximately 10
million atoms, while for band structure calculations only approximately
1.5 million atoms are used.

needed to enable such large-scale device simulations. Early

works on tight-binding models started from analytical effective

mass extractions from the usually only numerically defined

model [12]. Later semi-automatic mapping methods using

genetic algortithms were introduced [13] followed by DFT-

based projection methods [14,15]. Each atom has 20 orbitals in

the sp3d5s*_SO tight-binding basis. Strain and electronic struc-

ture simulations of such large systems are computationally

demanding and require highly scalable computational codes.

The code used for our simulations is the Nano Electronic

MOdeling tool in version 5 (“NEMO5”) [16-22].

Theoretical Model
Atomistic strain model
The Harmonic Keating strain model, introduced in [6], has the

elastic energy given by

(1)

where rmn is the displacement vector from atom m to atom n for

the strained crystal as shown in Figure 3, while dmn is the same

vector for the unstrained crystal. The coefficient α corresponds

to the force constant of the bond length distortion, the bond-

stretching coefficient. While β is the bond-bending coefficient

that corresponds to the force constant of the bond angle (θ) dis-

Figure 3: Bond lengths and bond angle for three neighboring atoms m,
n, and k.

tortion. The difference between the dot products reduces to the

difference in cos(θ).

The summation includes nearest neighbors only and the total

energy is minimized with respect to the individual atomic posi-

tions, thus relaxing the structure. The problem with the

harmonic Keating potential given by Equation 1 is that it

produces a symmetric energy profile around the equilibrium

interatomic distance and angle. Thus, the Keating model fails to

reproduce the weakening of the strain energy with increasing

bond length and underestimates the repulsive forces at close

atomic separations [7,8]. The anharmonic correction of the

Keating model proposed by Lazarenkova et al. [7,8] solves this

problem by modifying the two parameters α and β of the

Keating model and making them functions of bond length r and

bond angle θ as given by

(2)

A, B and C are anharmonic correction coefficients. A and C

describe the dependence of bond-stretching coefficient α and

bond-bending coefficient β on the bond length strain, while B

describes the dependence of bond-bending coefficient (β) on

angle deformation. The anharmonic model was developed to

simulate phonon dispersion and transport and the anharmonic

strain parameters were optimized to reproduce the Grüneisen

parameters γi = −(V/ωi)(δωi/δV), which are a measure of the de-

pendence of the phonon mode frequencies on strain. Simulating

the strain in quantum dots with the original anharmonic strain

parameters produces inaccurate results.

In addition, simulating strain in quantum wells with these pa-

rameters gives strain tensor components that do not match the
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analytical solution of the strain in quantum wells as shown in

Table 1. The parameters of the model have been tuned to repro-

duce the biaxial strain ratio σ of InAs in order to capture the

strain distribution in quantum wells and quantum dots made

from InAs. The biaxial strain ratio σ of InAs is 1.053 [23]. Only

the parameter α0 has been tuned to 19.35 Nm−1 while keeping

the rest of the strain parameters as reported in [7]. Table 1

shows the atomistic strain calculated for InAs/GaAs quantum

well, as shown in Figure 4, before and after tuning. The analyti-

cal expressions for the strain components in quantum wells are

 = (aGaAs − aInAs)/aInAs and [24], where a is the

lattice constant.

Table 1: Strain calculated for the InAs/GaAs quantum well. Tuning has
improved the anharmonic strain results in the quantum well.

method

analytical −6.68% 7.04%
anharmonic before tuning −6.68% 8.9%
anharmonic after tuning −6.68% 7.04%

Figure 4: An InAs/GaAs quantum well of thickness 3 nm used for the
optimization of the anharmonic strain model.

Electronic structure and absorption
The eigenstates of the system were calculated with a Hamil-

tonian constructed from semi-empirical tight-binding

sp3d5s*_SO basis. The Slater–Koster tight-binding [25] param-

eters for InAs, GaAs and AlAs are taken from [26,27]. Boykin

et al. show the effect of including strain on the tight-binding

Hamiltonian [10]. These parameters are well established and

previously verified with experimental measurements of quan-

tum dots [28-31].

For the absorption coefficient α, Fermi’s golden rule has been

used to calculate the absorption coefficient [32,33],

(3)

where ndots is the number of quantum dots per unit volume, ω

is the photon angular frequency, Ei and Ef are initial and

final energies of the transition, Fi and Ff are occupation proba-

bility of the initial and final states, ń is the refractive index of

the material, c is the speed of light in free space, ε0 is the

free space permittivity,  is the polarization of the incident

light, and  is the first-order dipole moment that is given by

, where q is the electron charge.

For transitions between bound states in valence and conduction

bands, Fi = 1, while Ff depends on the energy level and doping.

Normally, quantum dots are occupied by a number of electrons

equal to the average number of dopants per dot [34]. This ap-

proach is reasonable for quantum dots that are far from heavily

doped regions. However, it is not appropriate for quantum dots

adjacent to heavily doped regions, such as contacts. In addition,

to calculate optical transitions of doped quantum dots, the

many-particle states of the quantum dot are evaluated using

atomistic configuration interaction [35]. The method accurately

captures the electron–electron interactions in electrons bound to

dopant atoms in silicon. The single-particle states of the quan-

tum dot are obtained from atomistic tight-binding calculations

in NEMO5. These single-electron and hole states are used to

construct many-particle Slater determinants, of all possible con-

figurations. Using a full configuration interaction method [36],

a many-particle Hamiltonian is constructed and diagonalized in

the basis of Slater determinants to obtain the many-particle

energies and wavefunctions.

Results and Discussion
Simulation versus experimental results
The model is validated with the measured absorption spectrum

[11] of the QD system. Figure 5 shows the calculated and

measured absorption spectrum of the device. The simulation

result matches very well with the measured absorption and the

error in estimating the energy of the absorption peak is less than

3%. This small error can be attributed to idealizing the quan-

tum dot shape, ignoring the slight uncertainty in the material

compositions and the variations in the quantum dot dimensions.

The doping is 1.5 electrons per dot. The inclusion of many-par-

ticle configuration interaction (CI) in calculating the energy

transitions significantly improves the agreement between simu-

lations and experiment for the doped quantum dot system. The

larger peak in the simulated absorption both with and without

CI corresponds to quantum dots occupying one electron (1e)

transitioning to an excited state of two electrons and one hole

(2e1h), while the lower peak corresponds to the portion of

quantum dots occupying two electrons (2e) transitioning to an

excited state of three electrons and one hole (3e1h). Including

the CI in the simulation results in a reduction in the absorption

wavelength due to the repulsive nature of the interaction that in-
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Figure 5: The simulated and the measured absorption spectrum of the
QD system. The quantum dot is sample D from [11], which is a dome-
shaped QD with a base diameter of 20 nm and height of 5 nm. The
doping is 1–2 electrons per dot, which is assumed to be 1.5 here. The
inclusion of many-particle configuration interaction (CI) to calculate the
energy transitions significantly improves the agreement of the simula-
tion and the experimental measurements. The higher peak corre-
sponds to quantum dots occupying one electron (1e) transitioning to
an excited state of two electrons and one hole (2e1h), while the lower
peak corresponds to quantum dots occupying two electrons (2e) tran-
sitioning to an excited state of three electrons and one hole (3e1h).
The error is less than 3% in calculating the absorption peak photon
energy.

creases the transition energy. Additional comparisons with ex-

perimental measurements are provided in the discussion of the

effect of alloy mole fraction on the strain-controlling layer.

Band structure and states
Figure 6 shows the wavefunction probability density of the first

eight non-degenerate states of both electrons and holes. It is

worth noting that the hole ground state has an s-orbital-like

shape.

QDs have a complicated band profile since multiple effects

such as geometric confinement, strain and alloy disorder, can

cause major changes in the band edges of the bulk material. It is

important to know where the wavefunctions of the electrons and

holes are localized due to these disordered band edges, as the

spatial overlap between the states determines the optical absorp-

tion spectrum. Hence, one can look at the conduction and

valence band edges along arbitrary lines passing through the

quantum dot. This can be done using deformation potential

theory, which gives the shift of band edges due to small lattice

deformations. The shift in the band edges due to lattice strain

for zincblende materials is given by [37]:

Figure 6: The magnitude square of the wave functions of the electron
and hole states. Only the first eight electron and hole states are
plotted.

(4)

where ΔEc is the shift in the conduction band edge, ΔEvHH and

ΔEvLH are the shifts in the heavy and light hole band edges, re-

spectively. ac, av, and b are the deformation potential coeffi-
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cients of the material. In these simulations, the parameters

recommended for III–V materials by [38] are used. εH and εB

are the hydrostatic and biaxial strain components, which

are linear combinations of the atomistic strain components:

εH = εxx + εyy + εzz and εB = εxx + εyy− 2εzz [37], where z is the

growth direction. Figure 7 shows the band edges along two

lines through the middle of the quantum dot along the [001] and

[110] directions. The unstrained band edges show a significant

effect of strain on the band edges.

Figure 7: The conduction and valence band edges (solid lines) along a
line through the middle of the quantum dot in the (A) [001] and
(B) [110] directions. The dashed lines are the band edges of the
unstrained bulk materials, drawn to show the significant effect of strain
on deforming the band structure. The solid horizontal lines in the quan-
tum dots are plotted at the energies corresponding to electron and hole
confined states. The noisy red lines in (B) indicate the local band
edges in the explicitly represented atomistic alloy. In an atomistic
representation of an alloy one obtains an explicitly fluctuating band
edge [26].

Effect of quantum dot dimensions
Figure 8 shows the effect of variations in quantum dot diameter

and height on the in-plane polarized absorption spectrum. An

increasing dot diameter results in a red-shift of the absorption

peaks, while increasing the dot height does not have a signifi-

cant effect on the absorption wavelength. In contrast to the

simple particle-in-a-box problem, which predicts a stronger

sensitivity to the smaller dimension (the height), our simula-

tions show that absorption wavelength is much more sensitive

to changing the dot diameter than to changing the height.

Figure 8: The in-plane polarized absorption spectrum calculated for
(A) different diameters and (B) different heights of the quantum dot. In-
creasing the dot diameter results in a shift of the peaks towards longer
wavelengths, while increasing the dot height does not have a signifi-
cant effect on the wavelength.

The effects of changing dimensions on the energy transition ΔE

between the hole and electron ground states can be understood

with a simple analytical model. This transition has two contri-

butions: strain and confinement. The strain shifts the band edges

and affects the energy gap Eg, while the confinement increases

the minimum allowed energy of electron Eelec and hole Ehole

with respect to the band edges. Let Ebox = Eelec + Ehole, then the

transition energy E is

(5)

Due to the sign of the deformation potential and strain, the

valence band edge inside the quantum dot is of a heavy hole,

from Equation 4
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Figure 9: Hydrostatic εH and biaxial εB strain with different dimensions along a line through the middle of the quantum dot in the [001] direction. (A) εH
as a function of different dot diameters; (B) εH as a function of different dot heights; (C) is εB as a function of different dot diameters; (D) εB as a func-
tion of different dot heights. The magnitude of the biaxial strain increases with increasing diameter and decreases with increasing height, while the
hydrostatic strain evolves in the opposite direction.

(6)

Figure 9 shows the effect of changing diameter and height on

the hydrostatic and biaxial strain. The magnitude of the biaxial

strain increases with increasing diameter and decreases with in-

creasing height, while the magnitude of the hydrostatic strain

changes slightly in the direction opposite to the biaxial strain.

Increasing the height is equivalent to the decreasing diameter in

terms of changing the strain in the quantum dot since it depends

almost entirely on the aspect ratio not on the individual dimen-

sions [39]. Increasing the diameter reduces the energy gap,

which further reduces the optical transition energy, while in-

creasing the height increases the energy gap, which works

against the reduction in confinement energy. In the case of

varying height, this compensation results in almost the same

optical transition energy. Although the variations in the hydro-

static strain are smaller than variations in the biaxial strain, as

shown in Figure 9, the hydrostatic strain variations cannot be

neglected. This is due to the stronger weight of deformation

potential for hydrostatic strain. For example, ac − av = -6 eV is

six times higher than b/2 = −1 eV for InAs. Also, changing one

of the dimensions either increases or decreases the hydrostatic

strain, and it has the opposite effect on biaxial strain (decreases

or increases), but the hydrostatic and biaxial strain work

together in the same direction on the energy gap since they have

opposite signs in Equation 6.

To get an expression for Ebox, the dome-shaped quantum dot is

approximated to be a disc of cylinder radius R and height H.

One can easily obtain Ebox by solving an effective-mass Hamil-

tonian in the cylindrical coordinates,

(7)

where me, mh are the effective masses of electron and the heavy

hole, and X01 = 2.405 is the Bessel function of the first kind

with order zero. Note that effective masses for the electron and

heavy hole under strain are different from that in the bulk, and

the effective masses of InAs are me = 0.1m0 and mh = 0.48m0

[26].
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For a quantum dot of D = 20 nm and H = 5 nm, the sensitivity

of the confinement energy to the dot radius is

and the sensitivity of the energy gap to the dot radius is

which give a total sensitivity of the optical transition

(δΔE)/δR ≈ −22 meV/nm.

Similarly for variations in height,

which give (δΔE)/δH ≈ −3 meV/nm. Increasing the dot radius

causes both contributions to reduce the transition energy. In-

creasing the dot height causes both contributions to work

against each other, which reduces the sensitivity of the transi-

tion energy to dot height.

Strain controlling layer
Changing the mole fraction of In in the InGaAs strain control-

ling layer (capping layer) is a convenient way to tune the

absorption peak. The effect of mole fraction has been studied on

a slightly different system, reported in [9], which helps us

further validate the results of the simulations. The system re-

ported in [9] is almost the same as in [11] except for two differ-

ences: (i) it is not doped and, (ii) it uses GaAs instead of

AlGaAs. Figure 10 shows the experimental and simulation

results of the optical transitions of the QD systems reported in

[9]. Unlike the earlier discussed experiments, quantum dots in

[9] are undoped and have been measured at various strain

controlling layer compositions. The optimization of the anhar-

monic strain model greatly improves the simulation results. In-

creasing the mole fraction of In increases the transition wave-

length. This is further explained by examining the effect of

changing the mole fraction on hydrostatic and biaxial strain and

the band edges. Figure 11 shows the hydrostatic and biaxial

strain along a lines passing through the middle of the quantum

dot in the [001] direction for different mole fractions of In. As

shown in these figures, the hydrostatic and biaxial strain change

with the In mole fraction in the same way they change with di-

ameter. That is, increasing the In mole fraction results in an

increase in the magnitude of the biaxial strain and a decrease in

the magnitude of the hydrostatic strain. This leads to a lower

energy gap and larger absorption wavelength, as shown in

Figure 10.

Figure 10: Experimental and simulation results of the optical transition
of the QD system reported in [9]. Increasing the In mole fraction in-
creases the transition wavelength. The optimization of the anharmonic
strain model has greatly improved the simulation results.

Figure 11: Hydrostatic and biaxial strain with different mole fractions of
In along a line passing through the middle of the quantum dot in the
[001] direction.
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Conclusion
In this paper, a detailed theoretical study of the optical absorp-

tion and strain behavior in self-assembled quantum dots has

been presented. Self-assembled quantum dots are highly

strained heterostructures and a rigorous atomistic strain model

is needed to accurately calculate the electronic states in the

system. In addition, many-particle configuration interaction has

been accounted for, to properly simulate doped quantum dots.

The models accurately describe the complex coupled under-

lying physics. This improvement is shown by the closer agree-

ment with experimental data. The simulations reproduce the ex-

perimental results with an error below 3%. The model was

implemented in NEMO5 and used to simulate characteristics of

an InAs/GaAs/AlAs quantum dot systems. Increasing the dot

diameter results in a shift of the absorption peaks towards

longer wavelengths, while increasing the dot height does not

have a significant effect on wavelength. When the diameter is

changed, the band gap and confinement energies work with

each other, whereas when the height is changed, the band gap

and confinement energies work against each other. Increasing

the mole fraction if In in the strain controlling layer works in

the same way as increasing the dot diameter and changes the

strain leading to longer absorption wavelengths.

In conclusion, the method presented here provides a way to in-

corporate the inhomogeneous environment of QDs in simula-

tions by taking into account device geometry and quantum

confinement, alloy disorder, electrostatics, many-particle inter-

actions, and spatially varying strain distribution. Such details

are needed to interpret and guide experimental measurements

and device design with quantitative accuracy.
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