

Supporting Information

for

Effect of different silica coatings on the toxicity of upconversion nanoparticles on RAW 264.7 macrophage cells

Cynthia Kembuan, Helena Oliveira and Christina Graf

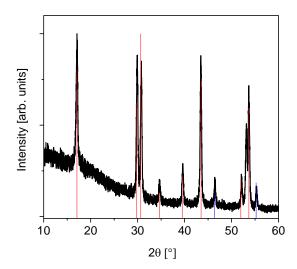
Beilstein J. Nanotechnol. 2021, 12, 35-48. doi:10.3762/bjnano.12.3

Experimental details, additional UC luminescence spectra, XRD data, STEM images, ICP-OES, and cell cycle data

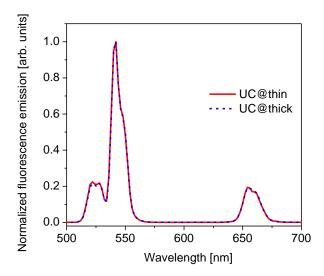
X-ray diffraction (XRD)

For XRD measurements, a minimum amount of 10 mg dried samples were used. The XRD device was a STOE Stadi P from STOE. A Cu $K_{\alpha 1}$ radiation source with a radiation wavelength of 0.15405 nm was used. The measurement angle was between 10-90° and with a measurement time of 120 s/0.2°.

Measurements of the upconversion luminescence


The upconversion luminescence (UCL) was measured at 25°C with a *FluoroMax-4* spectrometer from *Horiba Jobin Yvon* equipped with a 2 W 980 nm laser diode from *Insaneware-Robert Nowak*. The concentration of the samples was 1-2 g/L in cyclohexane for oleate-capped UCNPs or ethanol for silica-coated UCNPs, and quartz glass cuvettes (*QS Suprasil*, 5 mm, *Hellma* or *VWR*) were used.

Inductively coupled plasma-optical emission spectroscopy (ICP-OES)


The elemental composition of the UCNP cores was determined by ICP-OES. For this purpose, 1 mL (c = 5 g/L) of their dispersion in cyclohexane was dried. The dried UCNPs were subsequently dissolved in 1 mL of aqua regia for 30 minutes and diluted with 5 mL of ultrapure water. The measurements were performed with an iCAP 6000 Series ICP Spectrometer from Thermo Scientific with a radial optical approach. For calibration, series of solutions with different concentrations were prepared separately from an erbium standard for ICP ($c(E^{3+}) = 1, 5, 10$ ppm), ytterbium standard for ICP ($c(Y^{3+}) = 10, 20, 40$ ppm), and an yttrium standard for ICP ($c(Y^{3+}) = 10, 20, 40$ ppm), and an yttrium standard for ICP ($c(Y^{3+}) = 10, 20, 40$ ppm).

X-ray diffraction measurements

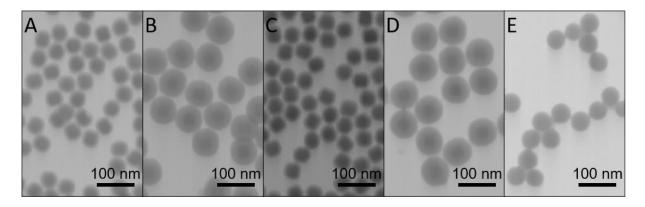

The XRD diffractogram (Figure S1) shows a predominantly hexagonal crystal structure for example at 18°, 29°, 44° and 54° (ICDD no. 28-1192), with two minor peaks from the α -phase at 47° for [220] reflex and 55° for [311] reflex (ICDD no. 06-0334; see Figure S1).

Figure S1: XRD diffractogram of the NaYF₄: Yb, Er cores (red lines: hexagonal phase peaks (ICDD no. 28-1192); blue lines: cubic phase peaks (ICDD no. 06-0334).

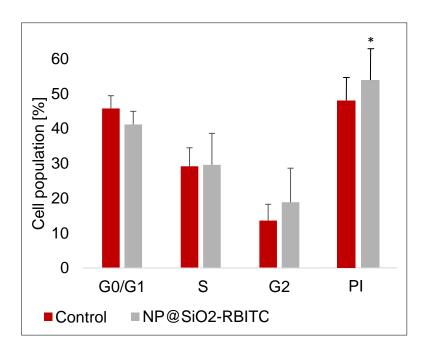

Figure S2: Upconversion luminescence spectra of UC@thin_NH₂ ($r_{SiO2} = 8 \pm 2$ nm) and UC@thick_NH₂ ($r_{SiO2} = 21 \pm 2$ nm) in ethanol. The cores of both particles are NaYF₄: 18% Yb, 2% Er nanoparticles. The spectra are normalized at 655 nm for better comparison. The excitation power density was 2 W/cm² at 980 nm.

Figure S3: STEM images of A: UC@thin_NH₂ ($r_{SiO2} = 8\pm 2$ nm); B: UC@thick_NH₂ ($r_{SiO2} = 21\pm 2$ nm; C: UC@thin_RBITC_NH₂ ($r_{SiO2} = 9\pm 2$ nm); D: UC@thick_RBITC_NH₂ ($r_{SiO2} = 22\pm 2$ nm) and E: functionalized SiO₂-nanoparticles SiO₂@RBITC_NH₂ (average STEM-diameter = 52±3 nm). The cores of all particles are NaYF₄: 18% Yb, 2% Er nanoparticles

Table S1: Filtered lanthanide ions value from the corresponding chlorides obtained from ICP-OES measurement.

Initial ions	Υ		Yb		Er	
concentration						
Concentration	Concentration	Ions	Concentration	Ions	Concentration	Ions
[ppm]	[mmol/L]	filtered	[mmol/L]	filtered	[mmol/L]	filtered
		[%]		[%]		[%]
1	$[4.30 \pm 0.05] \cdot 10^{-3}$	38±3	$[1.00 \pm 0.01] \cdot 10^{-3}$	17 ± 2	$[3.32 \pm 0.05] \cdot 10^{-4}$	6.0 ± 0.6
2	$[1.00 \pm 0.01] \cdot 10^{-2}$	45±4	$[2.40 \pm 0.01] \cdot 10^{-3}$	21 ± 2	$[7.48 \pm 0.05] \cdot 10^{-4}$	6.4 ± 0.6

Figure S4: Effect of silica particles without a UCNP core (NP@SiO $_2$ -RBITC-NH $_2$) on the cell cycle dynamics of RAW 264.7 macrophages after 24 h of exposure. The concentration was 200 μ g/mL.