

## **Supporting Information**

for

# Electrocatalytic oxygen reduction activity of AgCoCu oxides on reduced graphene oxide in alkaline media

Iyyappan Madakannu, Indrajit Patil, Bhalchandra Kakade and Kasibhatta Kumara Ramanatha Datta

Beilstein J. Nanotechnol. 2022, 13, 1020–1029. doi:10.3762/bjnano.13.89

Experimental, materials, characterization data, electrochemical measurements, water contact angle measurements, and comparison of reported ORR activities of Ag-based catalysts

License and Terms: This is a supporting information file under the terms of the Creative Commons Attribution License (https://creativecommons.org/ <u>licenses/by/4.0</u>). Please note that the reuse, redistribution and reproduction in particular requires that the author(s) and source are credited and that individual graphics may be subject to special legal provisions.

The license is subject to the Beilstein Journal of Nanotechnology terms and conditions: (https://www.beilstein-journals.org/bjnano/terms)

## Experimental

#### Materials

All chemicals and solvents were used without further purification. Graphite flakes (20 µm) and PVP ( $M_W \approx 10000$ ) were purchased from Sigma Aldrich. Co(NO<sub>3</sub>)<sub>2</sub>·6H<sub>2</sub>O, AgNO<sub>3</sub>, Cu(NO<sub>3</sub>)<sub>2</sub>·3H<sub>2</sub>O, KMnO<sub>4</sub> from SISCO SRL. ethylene glycol, aqueous NH<sub>3</sub>, concentrated H<sub>2</sub>SO<sub>4</sub> and 30% H<sub>2</sub>O<sub>2</sub> were purchased from FISHER scientific.

#### Synthesis of graphite oxide (GO)

Graphite oxide was prepared following the modified procedure reported by Tour et al. and a procedure reported based on our previous study [1,2].

#### Synthesis of Ag-CuO, Ag-Co<sub>3</sub>O<sub>4</sub>, and AgCuCo oxide NPs over rGO

Precursors of AgNO<sub>3</sub>, Cu(NO<sub>3</sub>)<sub>2</sub>·3H<sub>2</sub>O, and Co(NO<sub>3</sub>)<sub>2</sub>·6H<sub>2</sub>O were used to prepare bimetallic (Ag-CuO and Ag-Co<sub>3</sub>O<sub>4</sub>) and trimetallic (AgCuCo oxide) NPs over rGO. 44 mL of ethylene glycol was added to 1.25 mL of 0.1 M AgNO<sub>3</sub>, 0.625 mL of 0.1 M Cu(NO<sub>3</sub>)<sub>2</sub>·3H<sub>2</sub>O, and 0.625 mL of 0.1 M Co(NO<sub>3</sub>)<sub>2</sub>·6H<sub>2</sub>O, and the solution was agitated for 10 min. To this 0.025 g PVP-10000 was added and the mixture was sonicated for 10 min followed by the addition of 1 mL NH<sub>3</sub>. 0.01 g GO was dispersed in 5 mL of ethylene glycol under sonication for 30 min and was added dropwise to the resultant mixture. The colour of solution changed to black and was agitated for 60 min before being moved to a Teflon-lined microwave reactor (Anton-Paar Multiwave pro) for 20 min of temperature-controlled fast heating with constant stirring at 170 °C. The obtained black product was isolated via centrifugation at 10000 rpm for 15 min using ethanol, and was then dried in an oven at 60 °C for 10 h. The resultant material is henceforth denoted as Ag<sub>2.0</sub>Co<sub>1.0</sub>Cu<sub>1.0</sub> (ACC-2). The same material without using graphene

oxide as a support was labelled as ACC-2<sup>\*</sup>. Likewise, the other catalysts  $Ag_{0.6}Co_{1.5}Cu_{1.5}$  (ACC-1) and  $Ag_{6.0}Co_{1.0}Cu_{1.0}$  (ACC-3) were prepared using 0.625 and 1.875 mL of 0.1 M AgNO<sub>3</sub> and 0.937 and 0.312 mL of 0.1 M of Cu and Co salts, respectively. Bimetallic rGO-supported NPs (Ag-Co<sub>3</sub>O<sub>4</sub> and Ag-CuO) were prepared using 1.25 mL of 0.1 M Ag, Cu, and Co salts.

#### **Materials characterization**

An infrared spectrometer IR-Tracer 100 Schimadzu was used to record Fourier-transform infrared spectra (FTIR) of the prepared electrocatalysts. A powder X-ray diffractometer PANalytical X'pert3 was used to carry out powder X-ray diffraction (PXRD) measurements. The morphology studies were carried out by using a scanning electron microscope (FEI QUANTA 200) with 20 kV accelerating voltage. Transmission electron microscopy (TEM) analyses of ACC-2 were carried out by using a JEOL JEM-2100 plus microscope (Japan). X-ray photoelectron spectroscopy measurements on ACC-2 were carried out by using ULVAC-PHI, Inc; Model: PHI5000 Version Probe III. The water contact angles of ACC-2 and ACC-2<sup>\*</sup> (0.5–2 µL) were measured using a KYOWA DMs-40 contact angle metre (sessile drop), half-angle technique fit, and FAMAS add-in software.

#### **Electrochemical measurements**

All electrochemical measurements were performed on an electrochemical workstation (760E, CH Instrument) using a standard three-electrode system, which comprises of a graphite rod as counter electrode, silver/silver chloride (Ag/AgCl in 3 M KCl solution) as reference electrode and catalyst-loaded glassy carbon (GC) as working electrode. The working electrode was prepared by drop casting the catalyst ink onto a surface of pre-cleaned rotating disk electrode (RDE, 3 mm in diameter) and a rotating ring-disk electrode (RRDE, 4 mm in diameter). The catalyst ink was prepared by following a procedure similar to our previous study [2]. By dispersing 4 mg of each catalyst in 1 mL of IPA solution containing 20 µL of 5 wt % Nafion,

followed by ultrasonication for 30 min. Thereafter, 4  $\mu$ L of catalyst ink was drop cast on RDE. The catalyst loading on RDE-GC was maintained to be 226  $\mu$ g·cm<sup>-2</sup> during the electrochemical studies. The ORR performance of the catalysts was measured in O<sub>2</sub>-saturated 0.1 M KOH solution. The cyclic voltammetry (CV) curves were obtained at a scan rate of 20 mV·s<sup>-1</sup>. The linear sweep voltammetry (LSV) was performed using RDE at a scan rate of 10 mV·s<sup>-1</sup> with various rotation speeds (400–2500 rpm). All measured potentials are reported versus the reversible hydrogen electrode (RHE) [3]. The onset potential was defined as the potential required for generating a current density of 0.1 mA·cm<sup>-2</sup> in LSV curves. The electron transfer number was calculated with the help of the Koutecky–Levich (K-L) equation:

$$\frac{1}{J} = \frac{1}{J_k} + \frac{1}{J_d} = \frac{1}{J_k} + \frac{1}{B\omega^{1/2}}$$
(S1)  
$$B = 0.62nFAD_{O_2}^{2/3} v^{-1/6}C_{O_2}$$

where *J* is the measured current density,  $J_k$  is the kinetic diffusion current density,  $J_d$  is the diffusion current density, *B* is the slope,  $\omega$  is the angular velocity ( $\omega = 2\pi N$ , *N* is the rotation speed), *n* is the number of transferred electrons, *F* is the Faraday constant (96485 C·mol<sup>-1</sup>),  $C_0$  is the saturation concentration of O<sub>2</sub> (1.2×10<sup>-6</sup> mol·cm<sup>-3</sup>),  $D_{02}$  is the diffusion coefficient of O<sub>2</sub> (1.9×10<sup>-5</sup> cm<sup>2</sup>·s<sup>-1</sup>), and v is the kinematic viscosity (0.01 cm<sup>2</sup>·s<sup>-1</sup>) [3].

The number of transferred electrons and the amount of generated hydrogen peroxide were investigated using RRDE measurements. The yield of hydrogen peroxide ( $H_2O_2$ ) and the number of transferred electrons (*n*) were determined using the following equations:

$$H_2O_2(\%) = 200 \times I_r/N$$
$$Id + I_r/N$$
$$n = \frac{4 \times I_d}{I_d + I_r/N}$$

where  $I_d$  is the disk current,  $I_r$  is the ring current, and N is the current collection efficiency of the platinum ring (N = 0.38).

Moreover, the electrochemical active surface area (ECSA) was calculated via the double-layer capacitance using the following equation.

$$ECSA = C_{DL}/C_s$$

where,  $C_{DL}$  is double-layer capacitance and  $C_s$  represents the specific capacitance under alkaline conditions [4, 5]. Finally, the stability of the catalyst was tested by electrochemical cycling in the potential range of 0.6 and 1.0 V vs RHE in O<sub>2</sub>-staurated 0.1 M KOH solution at a scan rate of 100 mV·s<sup>-1</sup> for 10,000 cycles.

The PXRD patterns of the bimetallic Ag-Co<sub>3</sub>O<sub>4</sub> and Ag-CuO assemblies over rGO show peaks located at  $2\theta = 38.1^{\circ}$ ,  $44.2^{\circ}$ ,  $64.3^{\circ}$ , and  $77.1^{\circ}$ , which can be indexed to, respectively, the (111), (200), (220), and (311) planes of fcc Ag (JCPDS #04-0783) as shown in Figure S1. For the Ag-Co<sub>3</sub>O<sub>4</sub> sample, there are additional diffraction peaks at  $2\theta = 32.3^{\circ}$  and  $46.3^{\circ}$ , corresponding, respectively, to the (220) and (400) planes of the Co<sub>3</sub>O<sub>4</sub> JCPDS # 74-2120.

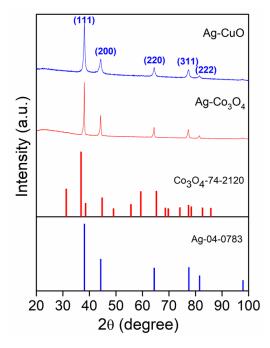
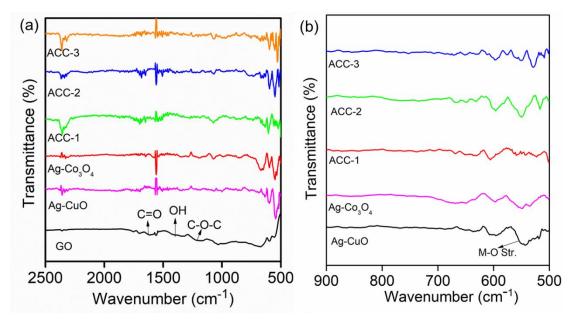




Figure S1: PXRD patterns of Ag-Co<sub>3</sub>O<sub>4</sub> and Ag-CuO.



**Figure S2:** (a) FTIR spectra of bimetallic (Ag-CuO and AgCo<sub>3</sub>O<sub>4</sub>) and trimetallic oxide nanoparticles (ACC-1, ACC-2 and ACC-3); (b) magnified view in the region 500 to 900 cm<sup>-1</sup>, representing the shift of the M–O bond of bi- and trimetallic oxides materials.

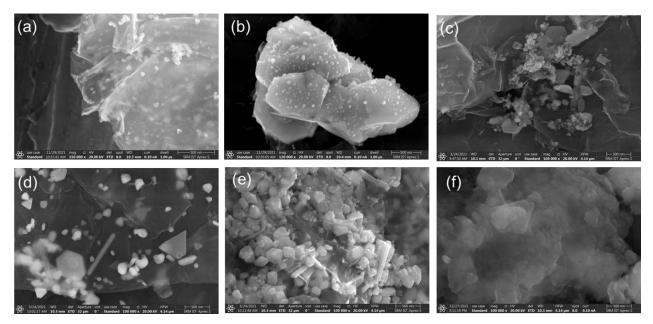
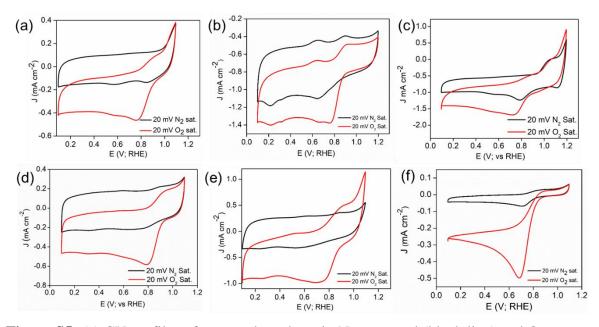




Figure S3: SEM images of (a) Ag-CuO, (b) Ag-Co<sub>3</sub>O<sub>4</sub>, (c) ACC-1, (d) ACC-2, (e) ACC-3,

and (f) ACC-2\*.



Figure S4: EDX spectra of (a) ACC-1, (b) ACC-2, and (c) ACC-3, respectively.



**Figure S5:** (a) CV profiles of prepared catalysts in N<sub>2</sub>-saturated (black line) and O<sub>2</sub>-saturated (red line) 0.1 M KOH at a scan rate of 20 mV·s<sup>-1</sup> for (a)Ag-Co<sub>3</sub>O<sub>4</sub>, (b) Ag-CuO, (c) ACC-1, (d) ACC-2, (e) ACC-3, and (f) ACC-2\*.

## **Overall reaction**

 $O_{2(g)} + 2H_2O_{(I)} + 4e^{-} \rightarrow 4 OH^{-}$ 

The reaction steps on the electrocatalyst surface are given in the following reactions:

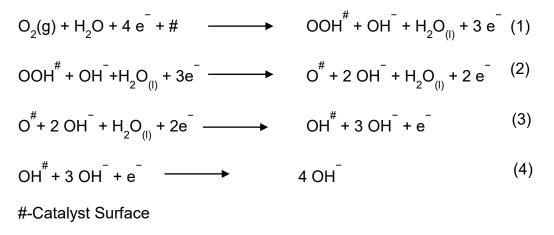
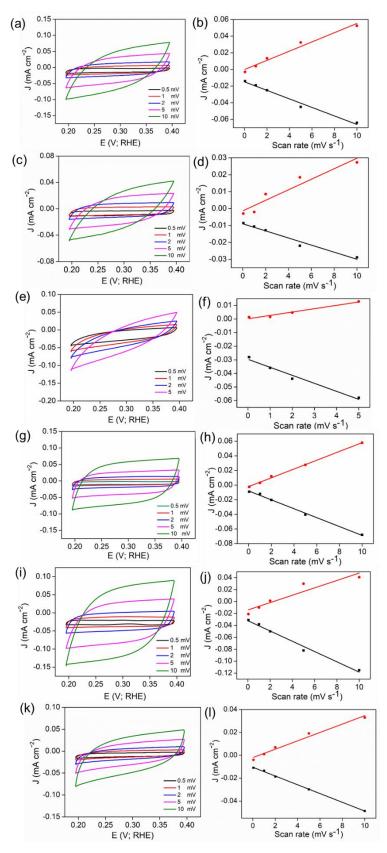




Figure S6: Proposed four-step ORR mechanism for ACC-2 electrocatalyst.



**Figure S7:** CV curves in a non-Faradaic region at various sweep rates (0.5, 1, 2, 5, and  $10 \text{ mV} \cdot \text{s}^{-1}$ ) in 0.1 M KOH for (a, b) Ag-Co<sub>3</sub>O<sub>4</sub>, (c, d) Ag-CuO, (e, f) ACC-1, (g, h) ACC-2, (i, j) ACC-3, and (k, l) ACC-2\*.

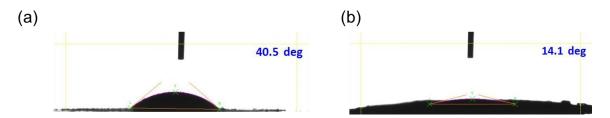



Figure S8: WCA measurements performed on (a) ACC-2\* ( $40 \pm 1^{\circ}$ ) and (b) ACC-2 ( $14 \pm 1^{\circ}$ ).

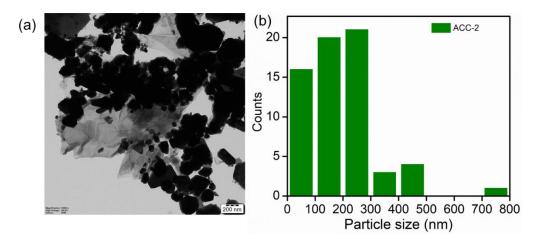



Figure S9: (a) TEM image and (b) corresponding particle size distribution of ACC-2.

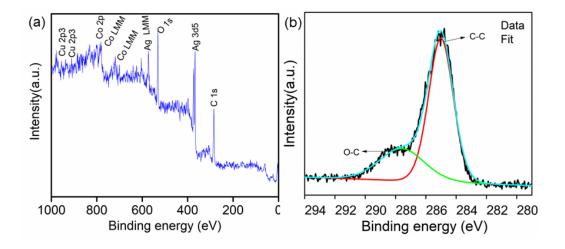
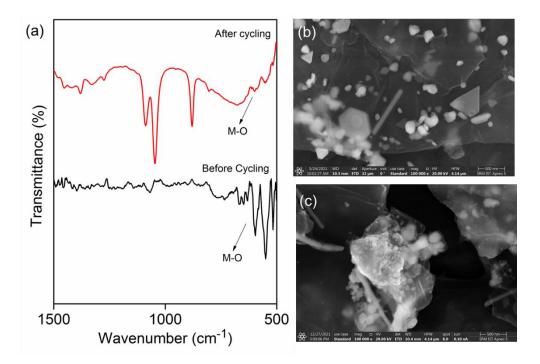




Figure S10: (a) Survey scan and (b) high-resolution C 1s XP spectra of ACC-2.



**Figure S11:** (a) FTIR spectra and SEM image of ACC-2 (b) before and (c) after 10,000 stability cycles.

**Table S1:** Particulate sizes calculated using the Scherrer equation for the bi- and trimetallicNPs over rGO.

| S1. | Sample name                       | Particulate size |
|-----|-----------------------------------|------------------|
| No. |                                   | (nm)             |
| 1   | ACC-1                             | 61               |
| 2   | ACC-2                             | 74               |
| 3   | ACC-3                             | 60               |
| 4   | ACC-2 *                           | 65               |
| 5   | Ag-Co <sub>3</sub> O <sub>4</sub> | 31               |
| 6   | Ag-CuO                            | 11               |

**Table S2:** Comparison of ORR activity parameters (mass and ECSA) for the bi- and trimetallic

 NPs over rGO.

| Sl.<br>No. | Electrocatalyst                   | Mass activity<br>(mA/mg) | ECSA<br>(m²/g) |
|------------|-----------------------------------|--------------------------|----------------|
| 1          | ACC-1                             | 20.38                    | 46.23          |
| 2          | ACC-2                             | 40.55                    | 66.92          |
| 3          | ACC-3                             | 42.05                    | 81.80          |
| 4          | ACC-2 *                           | 9.50                     | 41.48          |
| 5          | Ag-Co <sub>3</sub> O <sub>4</sub> | 20.66                    | 58.96          |
| 6          | AgCuO                             | 3.25                     | 28.76          |

**Table S3:** Comparison of ACC-2 with other synthesis techniques and key ORR parameters of

binary and ternary Ag-based catalysts.

| SI.<br>No. | Electrocatal<br>yst                                | Synthetic route                                                                                                                             | Working<br>Electrode          | ORR<br>Parameters                                                                                                                                                                                  | Stability                                                                 | Ref. |
|------------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------|
| 1          | AgCu NPs<br>@ Ni foam                              | Electrochemical deposition (50<br>sec) of Ag-Cu NPs over Ni<br>foam using a complexing agent                                                | Ni foam                       | $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                               | -                                                                         | [6]  |
| 2          | Ag <sub>2</sub> -Cu <sub>1</sub><br>NPs            | Solution combustion method                                                                                                                  | Glassy<br>carbon<br>electrode | $\begin{array}{ll} E_{onset} &= 0.79 \ V \ vs. \ RHE \\ E_{1/2} &= NM \\ J_{kl} &= 4.6 \ mA \cdot cm^{-2} \\ n &= 3.85 \\ Mass & activity &= \\ 38.6 \ mA \cdot mg^{-1} \\ ECSA &= NM \end{array}$ | -                                                                         | [7]  |
| 3          | Ag4Cu NPs                                          | Three step route<br>Melting of the metals<br>and melt spinning followed by<br>chemical etching by dealloying                                | Glassy<br>carbon<br>electrode | $\begin{array}{ll} E_{onset} &= 0.90 \ V \ vs. \ RHE \\ E_{1/2} &= 0.82 \ V \\ J_{kl} &= 6 \ mA \cdot cm^{-2} \\ n &= 3.86 \\ Mass \ activity = NM \\ ECSA = NM \end{array}$                       | 5,000 cycles                                                              | [8]  |
| 4          | AgCu/<br>Ordered<br>Mesoporou<br>s Carbon<br>(OMC) | OMC: Soft templating<br>followed by acid etching<br>Impregnation of Ag and Cu<br>salts followed by calcination<br>under H <sub>2</sub> atm. | Glassy<br>carbon<br>electrode | $E_{onset} = 1.00 \text{ vs. RHE}$ $E_{1/2} = 0.82 \text{ V}$ $J_{kl} = 5.2 \text{ mA} \cdot \text{cm}^{-2}$ $n = 3.8$ Mass activity = NM $ECSA = NM$                                              | 20,000 sec<br>(Chronoampero<br>metric studies)<br>with the loss of<br>10% | [9]  |

| 5  | AgCo<br>composite<br>nanotubes                                           | Electrospinning yielding<br>Co <sup>2+</sup> /PVP fibres. Calcination<br>followed by chemical<br>reduction and galvanic<br>replacement.      | Glassy<br>carbon<br>electrode | $\begin{split} E_{onset} &= -\ 0.067\ V\ vs.\ SCE \\ E_{1/2} &= NM \\ J_{kl} &= 4.75\ mA\cdot cm^{-2} \\ n &= 3.80 \\ Mass\ activity &= NM \\ ECSA &= NM \end{split}$                                                                                  | 10,000 sec<br>(Chronoampero<br>metric studies)<br>with the loss of<br>4% | [10]         |
|----|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------|
| 6  | AgCo alloy                                                               | Multistage incipient-wetness<br>impregnation followed by<br>calcination under H <sub>2</sub> atm.                                            | Glassy<br>carbon<br>electrode | $\begin{split} E_{onset} &= 0.8 \text{ V vs. RHE} \\ E_{1/2} &= \text{NM} \\ J_{k1} &= 3.9 \text{ mA} \cdot \text{cm}^{-2} \\ n &= 3.8 \\ \text{Mass activity} &= \text{NM} \\ \text{ECSA} &= \text{NM} \end{split}$                                   | 10,000 cycles                                                            | [11]         |
| 7  | Ag/Ag2O<br>@Co<br>metallo<br>covalent<br>organic<br>framework            | Solvothermal heating followed<br>by freeze drying                                                                                            | Glassy<br>carbon<br>electrode | $\begin{split} E_{onset} &= 0.87 \ V \ vs. \ RHE \\ E_{1/2} &= 0.76 \ V \\ J_{k1} &= 4.8 \ mA \cdot cm^{-2} \\ n &= 2.5 \\ Mass \ activity &= NM \\ ECSA &= 14 \ cm^{-2} \end{split}$                                                                  | 40 h<br>(Chronoampero<br>metric studies)<br>with the loss of<br>4%       | [12]         |
| 8  | Hollow<br>AgPdPt<br>nanotubes                                            | Micelle assisted galvanic<br>replacement followed by acid<br>etching                                                                         | Glassy<br>carbon<br>electrode | $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                   | 5,000 cycles                                                             | [13]         |
| 9  | AgCo-NGr                                                                 | Refluxing of metal salts, GO<br>and NH <sub>3</sub> followed by<br>hydrothermal and freeze drying                                            | Glassy<br>carbon<br>electrode | $\begin{split} E_{onset} &= 0.90 \text{ V vs. RHE} \\ E_{1/2} &= 0.82 \text{ V} \\ J_{k1} &= 4.95 \text{ mA} \cdot \text{cm}^{-2} \\ n &= 3.9 \\ \text{Mass activity} &= \text{NM} \\ \text{ECSA} &= 9.27 \text{ m}^2 \cdot \text{g}^{-1} \end{split}$ | 5,000 cycles                                                             | [14]         |
| 10 | AgCo/<br>Electroche<br>mically<br>reduced<br>graphene<br>oxide<br>(ERGO) | Ag, Co salts are mixed with<br>GO followed by reducing with<br>NaBH <sub>4</sub> Electrochemical<br>reduction of the resultant<br>composite. | Glassy<br>carbon<br>electrode | $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                   | 10,000 sec<br>(Chronoampero<br>metric studies)<br>with the loss of<br>4% | [15]         |
| 11 | Co3O4/Ag<br>@NrGO                                                        | Ag, Co salts were mixed with<br>GO under NH <sub>3</sub> followed by<br>solvothermal treatment and<br>freeze drying                          | Glassy<br>carbon<br>electrode | $\begin{array}{ll} E_{onset} &= 0.974 \ V \ vs. \ RHE \\ E_{1/2} &= 0.735 \ V \\ J_{k1} &= 6 \ mA \cdot cm^{-2} \\ n &= 3.86 \\ Mass \ activity = NM \\ ECSA = NM \end{array}$                                                                         | 40,000 sec<br>(Chronoampero<br>metric studies)<br>with the loss of<br>4% | [16]         |
| 12 | ACC-2                                                                    | Ag, Co, Cu salts are mixed with<br>GO nanosheets under aqueous<br>NH <sub>3</sub> followed by microwaving<br>at 170 °C for 20 min            | Glassy<br>carbon<br>electrode | $\begin{array}{ll} E_{onset} &= 0.94 \ V \ vs. \ RHE \\ E_{1/2} &= 0.78 \ V \\ J_{k1} &= 3.6 \ mA \cdot cm^{-2} \\ n &= 3.7 \\ Mass & activity \\ 40.55 \ mA \cdot mg^{-1} \\ ECSA = 66.92 \ m^2 \cdot g^{-1} \end{array}$                             | 10,000 cycles                                                            | This<br>work |

NM: Not mentioned

### References

- Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M. ACS Nano 2010, 4, 4806-4814. doi:10.1021/nn1006368
- Madakannu, I.; Patil, I.; Kakade, B. A.; Kasibhatta, K. R. D. *Mater. Chem. Phys.* 2020, 252, 123238. doi:10.1016/j.matchemphys.2020.123238
- Patil, I. M.; Swami, A.; Chavan, R.; Lokanathan, M.; Kakade, B. ACS Sustain. Chem. Eng. 2018, 6, 16886-16895. doi:10.1021/acssuschemeng.8b04241
- Govindarajan, N.; Kastlunger, G.; Heenen, H. H.; Chan, K. *Chemical Science* 2022, *13*, 14-26, 10.1039/D1SC04775B. doi:10.1039/D1SC04775B
- 5. McCrory, C. C. L.; Jung, S.; Peters, J. C.; Jaramillo, T. F. *Journal of the American Chemical Society* **2013**, *135*, 16977-16987. doi:10.1021/ja407115p
- Jin, Y.; Chen, F.; Lei, Y.; Wu, X. ChemCatChem 2015, 7, 2377-2383. doi:10.1002/cctc.201500228
- Ashok, A.; Kumar, A.; Matin, M. A.; Tarlochan, F. J. Electroanal. Chem. 2019, 844, 66-77. doi:10.1016/j.jelechem.2019.05.016
- Yin, S.; Shen, Y.; Zhang, J.; Yin, H.-M.; Liu, X.-Z.; Ding, Y. Appl. Surf. Sci. 2021, 545, 149042. doi:10.1016/j.apsusc.2021.149042
- Qiao, Y.; Ni, Y.; Chen, Z.; Kong, F.; Li, R.; Zhang, C.; Kong, A.; Shan, Y. J. Electrochem. Soc. 2019, 166, H272-H282. doi:10.1149/2.0361908jes
- Yu, A.; Lee, C.; Lee, N.-S.; Kim, M. H.; Lee, Y. ACS Appl. Mater. Interfaces 2016, 8, 32833-32841. doi:10.1021/acsami.6b11073
- Holewinski, A.; Idrobo, J.-C.; Linic, S. Nat. Chem. 2014, 6, 828-834.
   doi:10.1038/nchem.2032

- Wang, M.; Wang, C.; Liu, J.; Rong, F.; He, L.; Lou, Y.; Zhang, Z.; Du, M. ACS Sustain. Chem. Eng. 2021, 9, 5872-5883. doi:10.1021/acssuschemeng.0c09205
- Deng, Y.; Yin, S.; Liu, Y.; Lu, Y.; Cao, X.; Wang, L.; Wang, H.; Zhao, Y.; Gu, H. ACS Appl. Nano Mater. 2019, 2, 1876-1882. doi:10.1021/acsanm.8b02206
- Qaseem, A.; Chen, F.; Wu, X.; Zhang, N.; Xia, Z. J. Power Sources 2017, 370, 1-13. doi:10.1016/j.jpowsour.2017.10.004
- Joo, Y.; Ahmed, M. S.; Han, H. S.; Jeon, S. Int. J. Hydrog. Energy 2017, 42, 21751-21761. doi:10.1016/j.ijhydene.2017.07.123
- Wang, Q.; Miao, H.; Sun, S.; Xue, Y.; Liu, Z. Chem. Eur. J. 2018, 24, 14816-14823.
  doi:10.1002/chem.201803236