Supporting Information

for

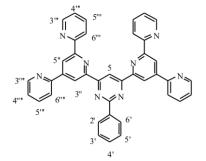
Septipyridines as conformationally controlled substitutes for inaccessible bis(terpyridine)-derived oligopyridines in twodimensional self-assembly

Daniel Caterbow¹, Daniela Künzel², Michael G. Mavros¹, Axel Groß², Katharina Landfester³ and Ulrich Ziener^{*1}

Address: ¹Institute of Organic Chemistry III/Macromolecular Chemistry, ²Institute of Theoretical Chemistry, University of Ulm, Albert-Einstein-Allee 11, D-89081 Ulm, Germany and ³Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany

Email: Ulrich Ziener* - ulrich.ziener@uni-ulm.de

*Corresponding author


Experimental details

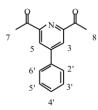
Synthesis

General

Phenylpyrimidine bis(pyridinium iodine) salt **7** [1], the diazachalcones **6**, and **8-11** [2,3] and tributyl(1-ethoxyvinyl)stannane [4] were prepared according to the literature. 2-Pyridinecarbaldehyde (98%+), iodine (100%), Na₂CO₃ (99%), and methanol (99.9%+) from Merck, NH₄OAc (99%) from VWR, copper(I) oxide (97%) and MgSO₄ (97%) from Acros, isoamylnitrite (97%) and 2,6-dichloro-4-aminopyridine (97%) from Alfa Aesar, Pd(PPh₃)₄ (99.9%) from Strem, 2-acetylpyridine (98%+) and KF (99%) from Fluka, and 1,2,4-trichlorobenzene (TCB) (+99%) from Aldrich were used as received. When water-free solvents were employed, they were dried according to the literature [5]. The other reagents and solvents were used without further purification. The NMR data were obtained on a Bruker DRX 400 and DRX 500 spectrometer, calibrated against the solvent signal (CDCl₃: ¹H NMR: $\delta = 7.27$; ¹³C NMR: $\delta = 77.0$; [D6]DMSO: ¹H NMR: $\delta = 2.50$; [D2]1,1,2,2-tetrachloroethane: ¹H NMR: $\delta = 6.00$; ¹³C NMR: $\delta = 74.2$) and are given in ppm. The assignment of the ¹H NMR signals is made by comparison with similar compounds described in [1,6], increment calculations, and simulations of the spectra with ACD/HNMR Predictor, Version 3.00, 1997.

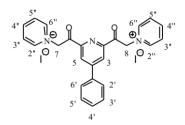
2,2'-BTP (5).

2-Acetylpyridine (3.53 g, 33.0 mmol) and 2-pyridinecarbaldehyde (4.00 g, 33.0 mmol) were added dropwise to a 25 wt % Na₂CO₃ solution (100 mL) and stirred for 1 h at 70 °C. After cooling down the solid precipitate was filtered off and dried under vacuum at rt. The resulting chalcone **6** was obtained as a brown solid (6.03 g) and used for the next step without further purification. NH₄OAc (2.26 g, 29.3 mmol), (1) (259 mg, 1.23 mmol) and phenylpyrimidine bis(pyridinium iodine) salt **7** (400 mg, 0.615 mmol) were suspended in methanol (20 mL) and heated under reflux for 30 min. A beige solid of 2,2'-BTP (**5**) precipitated in the heat and was centrifuged and dried under vacuum. Yield: 62.0% (236 mg, 0.382 mmol). ¹H NMR (500 MHz, 100 °C, TCE-d₂): δ 9.81 (1H, s, H⁵), 9.37 (2H, d, ⁴J = 1.5 Hz, H^{3''} or H^{5''}), 9.27 (2H, d, ⁴J = 1.5 Hz, H^{3'''} or H^{5'''}), 8.94–8.84 (8H, m, H^{2'}, H^{6'}, H^{3''''}, H^{6''''} and H^{3''''}), 8.15 (2H,

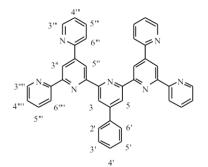

dt, ${}^{3}J = 8.0$ Hz, ${}^{4}J = 1.0$ Hz, H^{6^{····}}, 7.99–7.94 (4H, m, H^{5^{···}} and H^{5^{····}}), 7.69–7.65 (2H, m, H^{3[·]} and H^{5^{···}}), 7.65–7.60 (1H, m, H^{4^{···}}), 7.47–7.44 (4H, m, H^{4^{····}} and H^{4^{····}}); ¹³C NMR (500 MHz, 100 °C, TCE-d2): δ 164.7, 157.0, 156.4, 155.4, 155.2, 150.4, 149.5, 149.3, 138.5, 137.4, 136.8, 138.9, 129.0, 128.8, 124.2, 124.0, 121.7, 121.6, 120.6, 119.6, 112.6, 99.9 MALDI-TOF: calculated *m*/*z* for C₄₀H₂₆N₈: [M + H]⁺ 619.67, found 619. 97; elemental analysis: calculated: %C 77.65, %H 4.24, %N 18.11; found: %C 77.25, %H 4.31, %N 17.99.}

2,6-Dichloro-4-phenylpyridine (17).

To 2,6-dichloro-4-aminopyridine (3.53 g, 21.7 mmol) and copper(I) oxide (3.89 g, 27.2 mmol), isoamylnitrite (11 mL) and dry benzene (150 mL) were added under Ar. The mixture was refluxed for 6 h. After cooling to rt, a solid was formed and filtered off. From the residual filtrate the solvent was removed. The residue was dissolved in CHCl₃/hexane (1:1, v:v) and purified by column chromatography. (CHCl₃/hexane (1:1, v:v), alumina, $R_f = 0.8$) leading to **17** as a white solid. Yield: 30.2% (1.47 g, 6.58 mmol). ¹H NMR (400 MHz, CDCl₃): δ 7.61–7.58 (2H, m, H^{2°} and H^{6°}), 7.53–7.50 (3H, m, H^{3°}, H^{4°} and H^{5°}), 7.47 (2H, s, H³ and H⁵); ¹³C NMR (400 MHz, CDCl₃): δ 153.9, 151.0, 135.7, 130.2, 129.4, 127.0, 120.8.

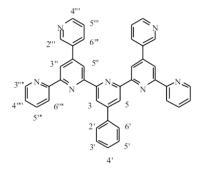

2,6-Diacetyl-4-phenylpyridine (18).

2,6-Dichloro-4-phenylpyridine (**17**) (1.48 g, 6.60 mmol), tributyl(1-ethoxyvinyl)stannane (5.29 g, 14.6 mmol), and Pd(PPh₃)₄ (0.354 mg, 0.306 mmol) in dry DMF (50 mL) were refluxed for 20 h under Ar. After cooling to rt the reaction mixture was poured onto a mixture of KF (1.31 g, 22.6 mmol), distilled water (60 mL) and ether (60 mL) and stirred for 15 min. A grey solid was filtered off and slightly washed with ether. The filtrate was extracted three times with ether; the organic phases were collected and dried over MgSO₄. After removing the solvent the bis(enol ether) remained as a brown solid. The solid was dissolved in acetone and a few drops of HCl (1M) were added. After stirring for 24 h at rt and removing the solvent, CHCl₃ and a saturated solution of NaHCO₃ was added. The product was extracted

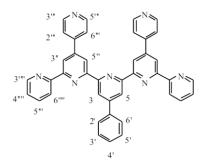

several times with CHCl₃ and dried over MgSO₄. Removing the solvent delivered **18** as a beige-brown solid, which was recrystallized from methanol and dried under vacuum. Yield: 44.0% (694 mg, 2.90 mmol). ¹H NMR (400 MHz, CDCl₃): δ 8.47 (2H, s, H³ and H⁵), 7.74–7.70 (2H, m, H²' and H⁶'), 7.49–7.56 (3H, m, H³', H⁴' and H⁵'), 2.84 (6H, s, H⁷ and H⁸); ¹³C NMR (100 MHz, CDCl₃): δ 199.7, 153.6, 150.8, 137.0, 130.1, 129.5, 127.3, 122.5, 25.9; MS (CI) *m*/*z* calculated for C₁₅H₁₃NO₂: [M + H]⁺: 240.06 [M + H]⁺, found: 240.06; elemental analysis: calculated: %C 73.30, %H 5.48, %N 5.85; found: %C 73.66, %H 5.33, %N 5.84.

Phenylpyridine bis(pyridinium iodine) salt 19.

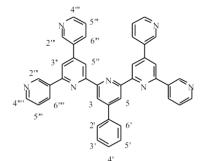
2,6-Diacetyl-4-phenylpyridine (**18**) (398 mg, 1.66 mmol) and iodine (942 mg, 3.71 mmol) in dry pyridine (7 mL) were refluxed under Ar for 4 h. After cooling to rt the product **19** as a beige solid was filtered off, cautiously washed with methanol, and dried under vacuum. Yield: 55.2% (478 mg, 0.916 mmol). ¹H NMR (400 MHz, DMSO-d₆): δ 9.13 (4H, d, ³*J* =5.6 Hz, H²^{''} and H⁶^{''}) 8.80 (2H, t, ³*J* = 4.0 Hz, H⁴^{''}), 8.64 (2H, s, H³ and H⁵), 8.35 (4H, t, ³*J* = 3.2 Hz, H³^{''} and H⁵^{''}), 8.02–7.99 (2H, m, H²['] and H⁶[']), 7.65–7.60 (3H, m, H³['], H⁴['] and H⁵[']), 6.72 (4H, s, H⁷ and H⁸); MS (CI) *m*/*z* calculated for C₂₅H₂₁I₂N₃O₂: 240.27 [M-2I-2pyridine + H]⁺, found: 240.17; elemental analysis: calculated: %C 46.25, %H 3.26, %N :6.47; found: %C 45.93, %H 3.62, %N 6.77.


2,2'-PhSpPy (14).

2,2'-Azachalcone **6** (65.2 mg, 0.310 mmol), phenylpyridine bis(pyridinium iodine) salt **19** (100 mg, 0.154 mmol) and NH₄OAc (700 mg, 9.09 mmol) were refluxed in methanol (6 mL) for 24 h. **14** precipitated as an off-white solid. It was filtered off, washed with methanol, and dried under vacuum. Yield: 26.1% (24.8 mg, 0.0402 mmol). ¹H NMR (500 MHz, 100 °C,

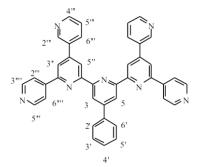

TCE-d₂): δ 9.46 (2H, d, ⁴*J* = 1.5 Hz, H³" or H⁵"), 9.18 (2H, d, ⁴*J* = 1.5 Hz, H³" or H⁵"), 9.00 (2H, s, H³ and H⁵), 8.92–8.90 (2H, m, H³", H³"" or H⁶""), 8.84–8.82 (2H, m, H³", H³"" or H⁶""), 8.78–8.75 (2H, m, H³", H³"" or H⁶""), 8.19 (2H, d, ³*J* = 8.0 Hz, H⁶"), 8.02 (2H, d, ³*J* = 8.0 Hz, (H² and H⁶) or (H³ und H⁵)), 7.97–7.92 (4H, m, H⁵"" and H⁵")), 7.67 (2H, t, ³*J* = 7.5 Hz, (H² and H⁶) or (H³ and H⁵")), 7.59 (1H, t, ³*J* = 7.5 Hz, H⁴), 7.47–7.40 (4H, m, H⁴" and H⁴""); MALDI-TOF: calculated *m*/*z* for C₄₁H₂₇N₇: 619.66 [M + 2H]⁺, found: 619.48; elemental analysis: calculated: %C 79.72, %H 4.41, %N 15.87; found: %C 79.48, %H 4.48, %N: 15.67.

2,3'-PhSpPy (13).


2,3'-Diazachalcone **9** (53.8 mg, 0.256 mmol), phenylpyridine bis(pyridinium iodine) salt **19** (76.0 mg, 0.117 mmol), and NH4OAc (550 mg, 7.14 mmol) were refluxed in methanol (7 mL) for 24 h. **13** precipitated as an off-white solid. It was filtered off, washed with methanol and dried under vacuum. Yield: 15.9% (11.5 mg, 0.0186 mmol). ¹H NMR (500 MHz, 100 °C, TCE-d₂): δ 9.21–9.20 (2H, m, H^{3''}, H^{5''}, or H^{2'''}), 9.02 (2H, s, H³ and H⁵), 9.00 (2H, d, ⁴*J* = 1.5 Hz, H^{3'''}, for H^{2'''}), 8.86 (2H, d, ⁴*J* = 2.0 Hz, H^{3'''}, H^{5'''}, or H^{2''''}), 8.82–8.80 (2H, m, H^{3''''} or H^{6''''}), 8.79 (2H, dd, ³*J* = 3.5 Hz, ³*J* = 5.0 Hz, H^{3''''} or H^{6''''}), 8.76 (2H, d, ³*J* = 8.0 Hz, H^{4'''}), 8.24 (2H, dt, ⁴*J* = 2.0 Hz, ³*J* = 5.0 Hz, H^{5''''}), 7.68 (2H, t, ³*J* = 7.5 Hz, (H^{2'} and H^{6'}) or (H^{3'} and H^{5'})), 7.61–7.58 (1H, m, H^{4'}), 7.53 (2H, dd, ³*J* = 5.0 Hz, ³*J* = 8.0 Hz, H^{5''''}), 7.42 (2H, ddd, ⁴*J* = 1.0 Hz, ³*J* = 5.0 Hz, ³*J* = 7.5 Hz, H^{4''''}); MALDI-TOF: calculated *m*/*z* for C₄₁H₂₇N₇: 619.66 [M + 2H]⁺, found: 619.63; elemental analysis: calculated: %C 79.72, %H 4.41, %N 15.87; found: %C 79.46, %H 4.53, %N 15.90.

2,4'-PhSpPy (12).

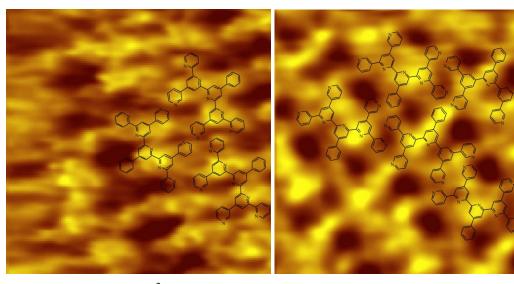
2,4'-Diazachalcone **10** (65.2 mg, 0.310 mmol), phenylpyridine bis(pyridinium iodine) salt **19** (100 mg, 0.154 mmol), and NH4OAc (700 mg, 9.09 mmol) were refluxed in methanol (6 mL) for 24 h. **12** precipitated as an off-white solid. It was filtered off, washed with methanol, and dried under vacuum. Yield: 11.4% (10.8 mg, 0.0176 mmol). ¹H NMR (500 MHz, 100 °C, TCE-d₂): δ 9.51 (2H, s, H³" or H⁵"), 9.50 (2H, s, H³" or H⁵"), 8.76 (2H, d, ³*J* = 4.5 Hz, H⁶""), 8.59 (2H, s, H³ and H⁵), 8.59–8.55 (2H, m, H³""), 8.15–8.06 (6H, m, H²', H⁶', H³"', and H⁵"'), 8.06 (4H, s, H²"' and H⁶"'), 7.79–7.77 (2H, m, H⁵"''), 7.66–7.63 (1H, m, H⁴'), 7.62–7.57 (4H, m, H³', H⁵' and H⁴""); MALDI-TOF: calculated *m*/*z* for C₄₁H₂₇N₇: 619.66 [M + 2H]⁺, found: 619.57; elemental analysis: calculated: %C 79.72, %H 4.41, %N 15.87; found: %C 80.14, %H 4.34, %N 15.81.


3,3'-PhSpPy (15).

3,3'-Diazachalcone **11** (65.2 mg, 0.310 mmol), phenylpyridine bis(pyridinium iodine) salt **19** (100 mg, 0.154 mmol), and NH4OAc (700 mg, 9.09 mmol) were refluxed in methanol (6 mL) for 24 h. **15** precipitated as an off-white solid. It was filtered off, washed with methanol, and dried under vacuum. Yield: 17.3% (16.4 mg, 2.66 mmol). ¹H NMR (500 MHz, 100 °C, TCE-d₂): δ 9.55 (2H, dd, ⁵*J* = 0.5 Hz, ⁴*J* = 2.0 Hz, H²^{''''}), 9.15 (2H, dd, ⁵*J* = 0.5 Hz, ⁵*J* = 2.5 Hz, H^{2''''}), 9.03 (2H, s, H³ and H⁵), 8.95 (2H, d, ⁴*J* = 1.5 Hz, H^{5''}), 8.81 (2H, dd, ⁴*J* = 1.5 Hz, ³*J* = 5.0 Hz, H^{4'''} or H^{4''''}), 8.78 (2H, dd, ⁴*J* = 1.5 Hz, ³*J* = 5.0 Hz, H^{4'''} or H^{4''''}), 8.57 (2H, dd, ⁴*J* = 1.5 Hz, ⁴*J* = 2.5 Hz, ³*J* = 8.0 Hz, H^{6''''}), 8.06 (2H, d, ⁴*J* = 1.5 Hz, H^{3'''}), 8.00–7.98 (2H, m, (H^{2'} and H^{6'}) or (H^{3'} and

H⁵')), 7.67–7.64 (2H, m, (H²' and H⁶') or (H³' and H⁵')), 7.60–7.58 (1H, m, H⁴'), 7.55 (2H, ddd, ${}^{5}J = 0.5$ Hz, ${}^{3}J = 5.0$ Hz, ${}^{3}J = 5.0$ Hz, ${}^{3}J = 8.0$ Hz, H⁵''' or H⁵'''), 7.53 (2H, ddd, ${}^{5}J = 0.5$ Hz, ${}^{3}J = 5.0$ Hz, ${}^{3}J = 8.0$ Hz, H⁵''' or H⁵'''); MALDI-TOF: calculated *m*/*z* for C₄₁H₂₇N₇: 619.66 [M + 2H]⁺, found: 619.68; elemental analysis: calculated: %C 79.72, %H 4.41, %N 15.87; found: %C 79.40, %H 4.62, %N 15.76.

4,3'-PhSpPy (16).



4,3'-Diazachalcone **8** (109 mg, 0.520 mmol), phenylpyridine bis(pyridinium iodine) salt **19** (158 mg, 0.243 mmol), and NH4OAc (948 mg, 12.3 mmol) were refluxed in methanol (7 mL) for 24 h. **16** precipitated as an off-white solid. It was filtered off, washed with methanol, and dried under vacuum. Yield: 37.9% (57.0 mg, 0.0923 mmol). ¹H NMR (500 MHz, 100 °C, TCE -d₂): δ 9.15 (2H, d, ⁴*J* = 2.0 Hz, H⁵" or H²", 9.02 (2H, s, H³ and H⁵), 8.99 (2H, d, ⁴*J* = 1.5 Hz, H⁵" or H²"), 8.86 (4H, dd, ⁴*J* = 1.5 Hz, ³*J* = 4.5 Hz, H³"" and H⁵""), 8.82 (2H, dd, ⁴*J* = 1.5 Hz, ³*J* = 5.0 Hz, H⁴"), 8.19–8.16 (6H, m, H⁶", H³"", and H⁵""), 8.11 (2H, d, ⁴*J* = 1.5 Hz, H³"), 8.00–7.98 (2H, m, (H² and H⁶) or (H³ and H⁵)), 7.69–7.66 (2H, m, (H² and H⁶) or (H³ and H⁵")), 7.62–7.58 (1H, m, H⁴'), 7.57–7.54 (2H, m, H⁵""); MALDI-TOF: calculated *m*/*z* for C₄₁H₂₇N₇: 619.66 [M + 2H]⁺, found: 619.52; elemental analysis: calculated: %C 79.72, %H 4.41, %N 15.87; found: %C 79.70, %H 4.75, %N 15.85.

STM

a)

Zoomed STM images of 2,3'-PhSpPy (13) and 3,3'-PhSpPy (15):

b)

Figure S1: a) $5 \times 5 \text{ nm}^2$ STM image ($I_{\text{set}} = 2.10 \text{ nA}$, $V_{\text{set}} = -600 \text{ mV}$) of 2,3'-PhSpPy (**13**) and b) $5 \times 5 \text{ nm}^2$ STM image ($I_{\text{set}} = 15.3 \text{ pA}$, $V_{\text{set}} = -610 \text{ mV}$) of 3,3'-PhSpPy (**15**) at the HOPG/TCB interface with overlaid molecules.

References

- Ziener, U.; Lehn, J.-M.; Mourran, A.; Möller, M. Chem.–Eur. J. 2002, 8, 951–957. doi:10.1002/1521-3765(20020215)8:4<951::AID-CHEM951>3.0.CO;2-9
- Zhang, Z.; Dong, Y.-W.; Wang, G.-W. Chem. Lett. 2003, 32, 966–967. doi:10.1246/cl.2003.966
- 3. Durinda, J.; Szücs, L.; Krasnec, L.; Heger, J.; Springer, V.; Kolena, J.; Keleti, J. Acta Fac. Pharm. Bohem. **1966**, *12*, 89–129.
- 4. Soderquist, J. A.; Hsu, G. J.-H. *Organometallics* **1982**, *1*, 830–833. doi:10.1021/om00066a012
- Perrin, D. D.; Armarego, W. L. F. *Purification of Laboratory Chemicals;* Pergamon: Oxford, 1998.
- Meier, C.; Ziener, U.; Landfester, K.; Weihrich, P. J. Phys. Chem. B 2005, 109, 21015–21027. doi:10.1021/jp054271d