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Evaluation of the SAXS data 

Two phase model: 

In this model we assume that the material is built up of two phases, one phase being hexagonally ordered pores 

embedded in a second phase, the silica matrix. Figure 1 shows schematically a hexagonal reciprocal lattice with 

the repeating unit distance 
max
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d π
=   and lattice constant 103
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Figure S1: Schematic representation of a hexagonally organized pore system and the characteristic sizes 

 

From a geometrical point of view, one can consider the lattice constant a to be: 

 

 a = D + t      (1) 

 

with D being the mean pore-diameter and t the mean wall thickness between the pores. Variation of pore 

diameter and wall thickness leads to changes in the electron density distribution and thus to differences in the 

scattering intensities of the diffraction peaks. 

  

According to Glatter and Kratky [1], the scattering intensity is proportional to the product of structure factor S(q) 

and the square of the scattering amplitude (form factor) P(q): 

 
2( ) ( ) ( )I q A S q P q∝ ⋅ ⋅      (2) 

For the case of a 2-D hexagonal lattice with spherical pores, S(q) is described as the sum of Gaussian functions 

with maxima located at the reciprocal lattice points. The reciprocal lattice points are equal to the positions of the 

Bragg-reflections in the scattering curve  
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The form factor P(q) can be written as [4]: 
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with R being the mean pore radius and J1 the Bessel function of the first kind. 

The scattering intensity (2) was then convoluted with the resolution function of the equipment described by a 

Lorentzian curve and fitted to the experimental values. Fitting parameters were the pore diameter and the wall 

thickness as described above. 

 

Electron density reconstruction: 

A different approach is the reconstruction of the electron densities from a Fourier series and by the appropriate 

choice of the phases [5,6]. This has been experimentally and theoretically used to model the electron density 

across the pore for modified and unmodified MCM-41 and SBA-15 materials [7,8].  For a centrosymmetric unit cell, 

the electron density can be written as a Fourier series of cosines: 
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q
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     (4) 

With Aq being the Fourier coefficients, q


the scattering vector of the reciprocal lattice and r


 a  vector to the 

position in the unit cell. 

The Fourier coefficients are determined from the peak intensities of the observed (h,k) reflections by  
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, LP(qhk) being the Lorentz polarization-factor [9] and m the multiplicity of the 

respective reflection [5,6].  

 

In order to obtain the integrated intensities I(q), the background scattering was subtracted from the data using a 

non-linear baseline. The remaining peaks were then fitted by a Gaussian function, from which the peak area was 

determined. 

 

The next step in reconstructing the electron density is choosing the right phase. For centro-symmetric structures, 

this is equivalent to choosing the correct sign (+ or -) of the Fourier coefficients. The method, known as the 

“swelling method”, was originally described by Stamatoff and Krimm [10] for lamellar phases ( αL ) and was 

extended by Turner and Gruner [5] to hexagonal phases: One compares two phases with slightly differing radii 

and therefore slightly differing X-ray patterns. Then all possible permutations of signs for the Aq’s are calculated 

and compared, the proper phase set will have the closest correspondence (for more details see [5,6]). In our 

case, we did not use a swelling of phases, but compared the samples before and after nucleophilic substitution, 

which led also to slightly differing X-ray patterns. Finally, one has to check if the resulting phase is physically 

consistent. For example, if the origin was placed in the centre of the pore cross section, the electron density 

should be a minimum at this point. Towards the pore wall, the electron density should increase and reach a 

maximum in the silica phase between the pores. 
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Nucleophilic substitution of chloro- by azido groups on the silica surface 

 

 
 
Figure S2: Electron-density reconstruction for modified silica gels (SiO2-(CH2)3-Cl and SiO2-(CH2)3-N3) prepared 

from a silica-precursor solution containing 3.0 mmol CPES. The electron density of SiO2-(CH2)3-Cl corresponds 

more to a sharp interface, whereas the broader distribution of SiO2-(CH2)3-N3 indicates a higher surface 

roughness due to the nucleophilic substitution. 
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Aging of unmodified silica gels in azide-containing media 
 
Table S1: Structural characteristics of untreated silica, reference silica (solvent/60 °C) and azide-treated silica 

gels (solvent/NaN3/60 °C) from nitrogen sorption analysis, solvents: TMU and H2O  

 

  

SBET
 a

               
[m2 g-1] 

CBET 
Vmax                                

[cm3
 g-1] 

DBJH, Des
b 

             
[nm] 

DBJH, Ads
c 

               
[nm] 

SiO2 521 63.4 478.0 6.22 7.52 

SiO2/ TMU 866 59.0 825.6 6.74 9.15 

SiO2/TMU/NaN3 722 47.3 915.5 7.99 11.73 

SiO2 532 55.7 496.4 6.19 9.41 

SiO2/H2O 641 69.9 628.4 6.71 9.15 

SiO2/H2O/NaN3 515 47.9 814.9 8.03 11.66 

aCalculated in the BET model. bCalculated from the desorption isotherm in the BJH model. cCalculated from the 

adsorption isotherm in the BJH model. 

 

 

 

 
Table S2: Structural characteristics, as obtained from SAXS analyses, of untreated silica, reference silica 

(solvent/60 °C) and azide-treated silica gels (solvent/NaN3/60 °C), solvents: TMU and H2O  

  
q(10)

a d(10)
a  ab  tDes

c tAds
d Mean pore 

diametere 
±0.2 [nm] 

mean  
wall thicknesse 

±0.2 [nm]   [nm-1] [nm] [nm] [nm] [nm] 

SiO2 0.57 10.95 12.64 6.21 4.91 8.59 4.11 

SiO2/ TMU 0.56 11.26 13.01 6.32 3.91 8.68 4.42 

SiO2/TMU/NaN3 0.54 11.64 13.44 5.40 1.68 9.30 4.20 

SiO2 0.57 11.07 12.79 6.55 3.33 8.50 4.20 

SiO2/H2O 0.58 10.85 12.53 5.72 3.28 8.55 4.05 

SiO2/H2O/NaN3 0.55 11.44 13.22 5.03 1.40 9.22 4.08 

aCalculated from SAXS measurements, q(10) = (4π/λ)sinΘ, d(10) calculated by the Bragg equation. bLattice 

constant, calculated by 2d(10)/(3)1/2. cWall thickness, calculated by a – DBJH, Des. dWall thickness, calculated by a – 

DBJH, Ads. eMean pore diameter and wall thickness calculated from the peak intensities (SAXS) by a two-phase 

model with an analytical approach.  
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Figure S3: Nitrogen isotherms and SAXS patterns of untreated silica gels, reference silica gels (solvent/60 °C) 

and azide-treated silica gels (solvent/NaN3/60 °C) in different solvents: TMU (top) and H2O (bottom)  
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Figure S4: Electron-density reconstruction for unmodified silica gels exposed to DMI and DMI/NaN3 (top left), 

TMU and TMU/NaN3 (bottom left), H2O and H2O/NaN3 (bottom right) and for gels exposed to DMF and 

DMF/TMAA (top right).  
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