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Useful mathematical relations and detailed calculations



A Useful relations

Here we list a set of useful relations for the derivations in the main text.

A.1 Green’s functions relations

The Green’s functions are related via
GR _ GA — G> o G<
The lesser and larger Green’s functions are given by
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From Equation 22 it is easy to see that
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and

9:GR = —GR(1 - 9. x®)G~.

A.2 Green’s functions and S-matrix relations

Noting that (for given ¢) dx, GR = GRA,GR, we find using Equation 90:
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This holds for arbitrary magnitude of X,,.
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In the main text we use
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For energy-independent I'*, we can use Equation 92 so that also
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and Equation 94 simplifies to
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B S-matrix derivation of the damping matrix
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The expression for y* given in Equation 27 can be written explicitly in terms of retarded and ad-

vanced Green’s functions as
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We split Equation 100 into two terms, the first due to the derivative acting on the Fermi function,

the second from the rest, ¥* = y*() + y*U)_ The first term is given by

Yv(vf 2y / de fo nga)tr{ a,WGAAVGRWTHaWGAAV,GRWT} (101)
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where we have used the cyclic invariance of the trace. Similar to the derivation for the mean force,

by means of Equation 93, Equation 101 can be expressed in terms of the frozen S-matrix as
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The second contribution, in terms of G® and G#, reads
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It is instructive to split the factor F, into a symmetric and an antisymmetric part under exchange

of the lead indices, Fyo = F,,, + Fy, > With

a ao'?
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Correspondingly, we split *) into symmetric [ys(”s)] and antisymmetric [}/S(”")] parts in the
lead indices: p*UD) = y3U1s) 4 4s5(1a) Dye to its symmetries, 7°/5) can be easily expressed in terms

of the S-matrix,
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where in the second line we have integrated by parts since F* vanishes for € — +oo, and in the last

line we have used Equation 93 once again.

B.1 “Equilibrium” dissipative term >

Since in equilibrium F? , = F¢, =0, y*(12)

ol = = 0 and we can now regroup terms into an “equilib-

eq
rium” contribution, y*¢4 = y() - 4U15) and a purely non-equilibrium contribution "¢ = ¥5(

Ila)
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By adding up the expressions in Equation 102 and Equation 105, it is straightforward to obtain

Equation 44 for y>°? given in the main text.

B.2 Non-equilibrium dissipative term "

To obtain Y’ in terms of S-matrix quantities we start from the expression

yre=on 'y / deF a,tr AVGRW M WGAA,/ 0, (GRWTHG,WGA)} , (107)
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and exploiting ), I1y = 1 and the identity (Equation 93), we note that Equation 107 can be written

as
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where [., .] indicates the commutator. Calculating each term in the commutator separately we ob-

tain
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where we have used Equation 90. Finally, with help of the identity (Equation 94), the non-

equilibrium term can be expressed as Equation 45 in the main text.

C Resonant level forces: alternative expressions

To calculate the current-induced forces for the resonant level model presented in Section “Applica-
tions”, we can alternatively start with the popular S-matrix parametrization [1,2]

VI=Ze®  JTen
S = , (110)
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where the transmission coefficient .7 and the phases 17,0 depend on X. We present here the results

for linear coupling, &(X) = & + AX. We can then identify the transmission probability

411 '
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and the phases
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We can now relate the current-induced forces to this S-matrix parametrization. The result for the

average force can be split into a non-equilibrium force F"** and an equilibrium force F4, i.e., F =

F™ + F¢1 with
ne _ de 8(9 — TI)
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The amplitude of the fluctuating force can be obtained from Equation 42 and is given by
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After some algebra, we also obtain
1 de ’
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This last expression corresponds to ¥*“? given in Equation 44. (As we pointed out previously, y*"*
vanishes in this case). Here we have isolated a term that vanishes in equilibrium, showing explic-

itly that there is a non-equilibrium contribution in 44.



D Current-induced forces for the two-level model

The mean force is given by
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The friction coefficient y* = y*¢? 4 """ reads
212
per =27 [ae { aef”ang [((e 20+ (0727 + (X +12)" + (2(e — €)X )
~ (e—e?] + % [4(e — @)X (e — 0)° + (/27 + (X)) } |
e _MTELX de fR|A_|6fL [((e &)? — (LX) - )2
+2(T/2)% (e — €0)* + (MX)*+12) + (r/z)“} . (116)

E Current-induced forces for the two vibrational modes model

Here we list the current-induced forces quantities, calculated from Equations 39, 42, 47 and 50
for the two-modes example discussed in the main text. For convenience, we define the following

quantities:

(e -8+ 4172

ga0(€) = e -~ (117)
2f (e —§)

o _ 2= 9) 118

g 1(8) ‘A’z ( )
2T«

o = 4" ¢ 119

g 2(8) |A‘2 ( )

_&\2 2 2
gas(e) = i(e é) g?l—“ ! (120)



where the 4-(—) refers to & = L(R) and with 1 — o« = R(L) for @ = L(R), and A(X},X,) =

il“L)(e—é-i—iFR) — 72

E.1 Mean force
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E.2 Fluctuating force
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E.3 Damping coefficients
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E.4 ‘“Lorentz” term
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