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1 Amplitude calibration

In the optical beam-deflection detection scheme, the cantilever oscillation yields a nearly har-

monically oscillating voltage Vz at the output of the photodetector preamplifier as illustrated in

Figure S1. For the calibration, we relate the voltage amplitude VA of the oscillating voltage

Vz = VA sin(2π f t +φ) to the amplitude A of the mechanical cantilever oscillation with frequency f

using a procedure where the tip–surface interaction is kept constant at a certain value while A is

varied [1]. As the cantilever is inclined at an angle θ towards the sample surface, we distinguish

between A, the oscillation amplitude of the cantilever and the component Az of the oscillation am-

plitude perpendicular to the sample surface. These two quantities are related by

A = Az cosθ . (12)

A deflection of the cantilever by an angle ∆θ changes the angle of the reflected laser beam by 2∆θ ,

resulting in a displacement of the laser spot on the PSD. The displacement on the PSD results in a

difference ∆Iz of the photocurrent from the PSD quadrants, which is in turn converted to a voltage

signal Vz by the preamplifier. The calibration establishes the relation between the amplitude A of the

oscillating cantilever and the voltage amplitude VA

A = S×VA (13)

where S is the sensitivity or calibration factor. Here, we obtain S in a noncontact measurement

without any knowledge of the details of the detection system except the tilt angle θ . To accomplish

this, the normalised frequency shift derived from the measured frequency shift ∆ f [2]

γ(zts,A) =
k0A3/2

f0
∆ f (zts, f0,k0,A) (14)

is kept constant during the entire calibration procedure to maintain a certain level of tip–surface in-

teraction independent of the cantilever oscillation amplitude (see main manuscript text and Figure S1
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for a description of the quantities involved). Note that this concept is valid only for amplitudes larger

than a critical value, which is typically 1 nm [3].

Figure S1: Schematic representation of the signal path in an NC-AFM system based on the optical
beam-deflection scheme. The relation between the amplitude A of the oscillating cantilever and its
component Az perpendicular to the surface is illustrated as well as the periodic cantilever deflection
∆θ , the PSD output current difference ∆Iz and the preamplifier output voltage Vz = VA sin(2π f t +
φ). The quantity zts represents the tip–sample distance in the lower turning point of the cantilever
oscillation.

In the calibration experiment, A is stepwise increased or decreased by a variation of the amplitude

feedback setpoint defining VA, while the normalised frequency shift γ is kept constant by the choice

of an appropriate frequency-shift setpoint ∆ fset. This causes the topography feedback to readjust the

z-piezo position zp, which is recorded as a function of the varied oscillation amplitude VA as shown

in Figure S1. A MATLAB script (The MathWorks, Inc., Natick, MA, USA) is used to control the

setpoints of VA and ∆ f and to determine the corresponding zp value. Initially, the tip is approached

to the surface and stabilised at a distance in the long-range interaction regime by the choice of an

appropriate frequency shift setpoint ∆ fset. After waiting for a while to reduce piezo creep effects, the

piezo position zp is recorded for each oscillation voltage amplitude VA, while V 3/2
A ∆ f is kept constant

by adjusting the ∆ f setpoint accordingly. Typical parameters and results are shown in Table S1 and

Figure S2, respectively.
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Table S1: Typical chart for amplitude calibration compiling voltage oscillation amplitudes VA and
their corresponding frequency shift setpoints ∆ fset for keeping the normalised frequency shift at a
constant value. The resulting response of the topography feedback for a single series of measure-
ments is given as zup

p .

VA (mV) ∆ fset (Hz) zup
p (nm)

500 −30.00 24.04
511 −29.03 24.21
522 −28.11 24.39
533 −27.23 24.55
554 −26.40 24.73
556 −25.61 24.89
567 −24.86 24.07
578 −24.15 24.23
589 −23.47 24.36
600 −22.82 24.53
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Figure S2: Typical results for a cantilever-oscillation-amplitude calibration performed in sys-
tem C. (a) Amplitude calibration curves strongly influenced by thermal drift in the z-direction
(180 pm/min) yielding different results for runs with increasing and decreasing amplitude. The
measurement is taken within 150 s for a cantilever of NCH type ( f0 = 311420, kdim = 50 N/m,
Q0 = 34900). (b) Calibration curves exhibiting negligible thermal drift. The measurement is taken
within 320 s for a cantilever of FM type ( f0 = 68183, kdim = 3 N/m, Q0 = 173700). The strongly
different sensitivities obtained for measurements (a) and (b) are not only the results of different
cantilever properties but mainly stem from the use of preamplifiers with a strongly different gain.
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The calibration factor S is obtained from the slope in the plot zp versus VA and considering the

correction for the tilt angle θ :

S =
∆zp

∆VA
cosθ . (15)

To compensate for thermal drift as well as piezo creep, this procedure is first performed with in-

creasing oscillation amplitude and then repeated with decreasing oscillation amplitude. Respective

measurements are denoted as "up" and "down" in the plots of Figure S2. While Figure S2a shows a

measurement with a significant drift in the z direction, for the small drift measurement in Figure S2b,

the "up" and "down" curves almost coincide with each other. To reduce the systematic error due to

drift, the mean slope is used as the final result. The calibration measurement is repeated several

times and results are averaged to reduce the statistical error. The standard deviation for a series of

calibration runs is typically 1%.

2 Thermally excited cantilever oscillation

Thermally excited fluctuations of the cantilever are of special interest as they determine the ulti-

mate noise limit in NC-AFM measurements. Based on an approach originally proposed to describe

thermal noise in a resistor [4], we derive the power spectral density for the displacement Dz
th of a can-

tilever in thermal equilibrium with a thermal bath at temperature T . According to the equipartition

theorem [5], we assume that the mean potential energy of the one-dimensional cantilever oscillator

in contact with the thermal bath is equal to kBT/2

1
2

k
〈
z2(t)

〉
=

1
2

kBT (16)

with k being the static stiffness of the cantilever and kB the Boltzmann constant. The cantilever is

assumed to be excited by random thermal fluctuations in the thermal bath. According to the Wiener–

Khinchin theorem [5], the cantilever mean-square displacement of this random stationary process
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can be related to the power spectral density of the cantilever displacement Dz
th by

〈
z2(t)

〉
=

1
2π

∞∫
0

Dz
th(ω)dω . (17)

The total mean-square displacement can be decomposed into the sum of displacements originat-

ing from the cantilever eigenmodes [6] and is related to constants of modal stiffness kn for the nth

eigenmode. Using Equation 16 we find:

1
2

k
〈
z2(t)

〉
=

k
2

∞

∑
n=0

〈
z2

n(t)
〉

=
k
2

∞

∑
n=0

kBT
kn

=
kBT

2

∞

∑
n=0

k
kn

(18)

where zn is the displacement corresponding to the nth eigenmode. Equation 18 demonstrates that

the contribution of the nth eigenmode to the total energy of the thermally excited cantilever is

(k/kn)(kBT/2).

It has been shown that the modal stiffness kn, specifically for the higher harmonics, strongly

depends on the mass ratio µ = mtip/mbeam [7,8], where mtip and mbeam are the masses of tip and can-

tilever beam, respectively. Calculated relations between the modal stiffness and the static stiffness

depending on the mass ratio are given in Table S2 for the first four eigenmodes. The Table shows

that 97% of the total oscillation energy is in the fundamental mode for a beam without a tip and this

fraction increases as the tip mass increases.

The ratios between the higher harmonic eigenfrequencies fn to the fundamental eigenfrequency

f0 in dependence of the mass ratio µ are given in Table S3.

Similar to the mean-square cantilever displacement, the total thermal displacement power spec-

tral density is represented as the sum of contributions from the cantilever eigenmodes:

Dz
th(ω) =

∞

∑
n=0

Dz
th,n(ω) . (19)
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Table S2: Ratios of modal cantilever stiffness kn to the static stiffness k calculated for several
eigenmodes of a rectangular cantilever beam with a tip for different mass ratios using Equation 5
in [8].

stiffness mass ratio µ

ratio 0 0.01 0.05 0.1
k0/k 1.03 1.03 1.02 1.01
k1/k 40.46 43.21 55.83 74.93
k2/k 317.2 360.0 578.4 949.66
k3/k 1218 1471 2890 5534

Table S3: Ratios of the eigenfrequency fn of higher harmonics of a rectangular cantilever beam
with a tip to the eigenfrequency f0 of its fundamental mode for different mass ratios. Values are
calculated by using Equation 10 in [9].

frequency mass ratio µ

ratio 0 0.01 0.05 0.1
f1/ f0 6.27 6.27 6.35 6.52
f2/ f0 17.55 17.57 17.94 18.71
f3/ f0 34.39 34.45 35.43 37.30

To determine the displacement power spectral density for each mode n, we assume a constant energy

spectral density Ψn from the thermal bath exciting the cantilever following the arguments given by

Nyquist for the explanation of a thermally excited electrical current in a resistor [4].

The response of the cantilever to this thermal excitation is determined by its amplitude response

G(ω), which is the amplitude response of a damped harmonic oscillator [10]. For each eigenmode

we assume

Gn(ω) =
1√

(1−ω2/ω2
n )

2 +ω2/(ω2
n Q2

n)
(20)

where ωn = 2π fn and Qn are the angular eigenfrequencies and quality factors of the nth mode,

respectively. Therefore, we represent the energy spectral density of the nth mode, being (1/2)kDz
th,n,

as

1
2

kDz
th,n(ω) = G2

n(ω)Ψn . (21)

Considering the result of Equation 18, stating that a fraction k/kn of the total energy kBT/2 goes to

S7



the nth eigenmode, and integrating over Dz
th,n we find for each mode:

k
kn

kBT
2

=
1

4π
k

∞∫
0

Dz
th,n(ω)dω

=
1

2π

∞∫
0

G2
n(ω)Ψndω

=
Ψn

2π

∞∫
0

1
(1−ω2/ω2

n )
2 +ω2/(ω2

n Q2
n)

dω .

We substitute ζn = ω/ωn and dω = ωndζn and find

k
kn

kBT
2

=
Ψnωn

2π

∞∫
0

dζn

ζ 4
n +

(
1

Q2
n
−2
)

ζ 2
n +1

.

Solving the integral using

∞∫
0

dζn

ζ 4
n +aζ 2

n +b
=

π

2
1

√
b
√

a+2
√

b

with a = (1/Q2
n−2) and b = 1 yields the excitation energy spectral density for the nth mode:

Ψn =
2kBT
Qnωn

k
kn

. (22)

Inserting this result in Equation 21 yields the displacement power spectral density of the ther-

mally excited cantilever:

Dz
th,n(ω) =

4kBT/(knQnωn)

(1− (ω/ωn)2)2 +ω2/(ωnQn)2

or

Dz
th,n( f ) =

2kBT/(πknQn fn)

(1− ( f/ fn)2)2 + f 2/( fnQn)2

for the nth oscillation mode. This agrees well with results reported by other authors [11-13]. A
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calculated example of the displacement thermal noise spectral density dz
th =

√
Dz

th for a typical

cantilever at room temperature for the first four oscillation modes is given in Figure S3.

Figure S3: Calculated thermal noise spectral density dz
th in the frequency range covering the first

four modes of a cantilever with f0 = 68347 Hz, k0 = 2.8 N/m and Q0 = 103600. Values for fn and
kn of the higher modes are calculated neglecting the tip mass. The Qn are typical values experimen-
tally determined for a cantilever of this type (Q1 = 39000, Q2 = 5800, Q3 = 2000).

3 Measuring and controlling the frequency response of the PLL

The effective demodulation bandwidth of the PLL system depends on details of the PLL feedback

loop filter settings and output filter characteristics. Hence, the experimental determination of the

frequency response is highly desirable unless this information is fully available in the technical

documentation of the demodulator system. For a measurement of the amplitude response Gfilter, the

tip is positioned above the sample in range of solely electrostatic forces. The frequency shift ∆ f

is recorded as a function of the sample bias voltage Vdc yielding a parabola like the one shown in

Figure S4a. Then, the bias voltage is modulated with a constant amplitude of typically 1 V and Vdc

is fixed at a working point V 0
dc, where the bias modulation yields a well measurable modulation in

the frequency shift signal. The amplitude ∆ f m of the latter signal is determined by a lock-in detector

integrated in the NC-AFM setup as shown in Figure S4b. The amplitude response is measured by

recording the signal ∆ f m while sweeping fm over the desired frequency range.
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Figure S4: (a) Illustrative representation for a ∆ f vs Vdc curve and (b) experimental scheme for
the measurement of the frequency response of the PLL demodulator of an NC-AFM system. The
modulation V m sin(2π fmt) of the bias voltage Vdc yields a modulation of the ∆ f signal. The bias
voltage working point V 0

dc is chosen to obtain a frequency shift amplitude of typically ∆ f m = 3 Hz.
A signal generator is used to modulate the bias voltage with a constant amplitude V m while record-
ing the resulting modulation amplitude of the frequency shift signal ∆ f as a function of the modu-
lation frequency fm with a lock-in detector synchronised to the signal generator.

Measurements of the frequency response are performed with systems A, B and C, where the de-

modulation is accomplished by an easyPLL system, an easyPLL plus system, or a PLLpro2 system,

respectively, as described in the experimental section of the main text.

In the case of the easyPLL systems, second order low-pass filters located at the ∆ f output of the

demodulator with the transfer function

H(s) = 1/
(
1+ s/(ωcQ f )+(s/ωc)

2) (23)

are installed, where fc and Q f are the cutoff frequency and the quality factor of the filter, respectively.

The variable s is the complex angular frequency. The amplitude response is calculated as the absolute

value of the complex transfer function for s = iω

G(ω) = |H(iω)|

and plotted against the modulation frequency fm yielding a response curve like the one shown in

Figure S5. We also perform a fit of a model curve based on Equation 23 to the experimental data.

S10



Figure S5: Measured amplitude response of the 300 Hz filter of the easyPLL system modelled as
a second order low pass filter. A fit of the model to the experimental data yields fc = 338 Hz and
Q f = 0.85.

For the transfer function of the filter having a nominal bandwidth of 300 Hz, the fit yields fc =

338 Hz and Q f = 0.85 as cutoff frequency and quality factor, respectively.

The bandwidth B−3dB is defined as the frequency fm at which the signal is attenuated by 3 dB:

Gfilter(B−3dB) = 1/
√

2 .

For the 300 Hz filter, we obtain B−3dB = 392 Hz. For noise considerations, often the equivalent

noise bandwidth BENBW defined as [14]

BENBW =

∞∫
0

G2
filterd fm (24)

is used instead. Here, we yield BENBW = 450 Hz for the 300 Hz filter.

For the easyPLL plus system, we investigate two different filter settings with nominal frequen-

cies of 120 Hz and 400 Hz and obtain the amplitude response curves shown in Figure <S6 with

fc,120 = 120 Hz, fc,400 = 362 Hz, Q f ,120 = 0.73 and Q f ,400 = 0.83 as cutoff frequency and qual-

ity factor of the 120 Hz filter and the 400 Hz filter, respectively. The bandwidth is determined as
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B−3dB,120 = 123 Hz, B−3dB,400 = 415 Hz, BENBW,120 = 137 Hz and BENBW,400 = 473 Hz for the two

filter settings, respectively.

Figure S6: (a) Measured amplitude response of the 120 Hz filter of the easyPLL plus system mod-
elled as a second order low pass. The fit of the model to the experimental data yields fc = 120 Hz
and Q f = 0.73. (b) Measured amplitude response of the 400 Hz filter of the easyPLL plus system
where the fit yields fc = 362 Hz and Q f = 0.83.

For the PLLpro2 system, the transfer function is generally more sophisticated as this system

offers a large variety of filter settings. Here, the adjusTable low-pass filter is not located at the ∆ f

output but inside the feedback loop of the PLL. Therefore, the frequency response not only depends

on the low-pass filter, but also on the proportional–integral (PI) controller settings and the system

has to be described for closed-loop operation [15].

To describe this system in detail, we first recall that the transfer function of the open loop with
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the low-pass characteristics HLP and an amplification factor K of the voltage controlled oscillator

can be written as [15]

HOL(s) = K× HLP(s)
s

.

The amplification K is split into a proportional part KP and an integral part KI . The PI controller

determines the response of the feedback system. Its transfer function is inserted into the open-loop

function

HOL(s) = KP

(
1+

KI

s

)
× HLP(s)

s
.

HLP are Butterworth filters [16] with order o and cutoff frequency fc. Finally, the transfer function

of the closed loop HCL(s) can be described as [15]

HCL(s) =
HOL(s)

1+HOL(s)
.

The transfer function of the PLLpro2 can hardly be modelled in total due to the complexity of

the system. Thus, the amplitude response is measured using the procedure described above. Several

curves ∆ f m versus fm are recorded to investigate the influence of the loop filter HLP of order o and

cutoff frequency fc as well as the settings of the PI controller on the frequency response. To relate

the settings P and I in the PLL software to the parameters KP and KI of our model, a fit of the model

to the measured curve is performed for various filter settings and yields prefactors of 369 deg for the

P gain and 3.2 for the I gain. These values have to be multiplied to the values of P and I gain, set

in the PLL software to obtain a quantitative description of the frequency response. To demonstrate

the precision of the predictions, we plot two amplitude response curves in Figure S7. These curves

show the amplitude response of the PLL system with fc = 1000 Hz, n = 3 and a P gain setting of

−2 Hz/deg as a comparison between model and experiment. While we obtain a low-pass behaviour
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with varying steepness for an I gain setting of 1 Hz (see Figure S7a), the I gain setting of 200 Hz

yields a slight gain peaking at 100 Hz (see Figure S7b).

Figure S7: Measured and simulated amplitude response of the PLLpro2 system modelled as a
closed loop control. PLL parameters: (a) fc = 1000 Hz, o= 3, KP = 369× (-2 Hz/deg), KI = 3.2×1
Hz. (b) fc = 1000 Hz, o = 3, KP = 369× (-2 Hz/deg), KI = 3.2×200 Hz.

The phase response is calculated as the argument of the transfer function

φ = arg(H(iω)) .

Figure S8 shows predictions for amplitude (a) and phase (b) response for different P and I gain

settings. These curves demonstrate that there are optimum settings (P =−2.2 Hz/deg and I = 1 Hz

in Figure S8) yielding a rather flat amplitude response over the desired bandwidth and a steep slope
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above fc. If the P and I gain settings are too large, gain peaking occurs. In contrast, a significant

attenuation is observed if P is too small. The phase response is also affected by P and I gain settings.

Here, the optimum settings yield a smooth response curve with the least pronounced changes in the

gradient.

Figure S8: Calculated amplitude response (a) and phase response (b) of the filter of the RHK PLL-
pro2 demodulator with fc = 500 Hz, o = 3 and different P gain and I gain settings. (c) Step re-
sponse calculated using Equation 25. (d) Step response measured under the same experimental
conditions.

The characteristics of the transfer function are closely related to the step response of the system in

the time domain. The step response a(t) can be calculated by applying the inverse Laplace transform

a(t) = L −1
{

HCL(s)
s

}
(25)

to the product of the transfer function HCL(s) and the unit step function 1/s [17]. This is performed

numerically [18] using a MATLAB script (The MathWorks, Inc., Natick, MA, USA). The respective
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graphs are shown in Figure S8c, where the curves demonstrate the result of wrong P and I settings

for the step response in terms of overshoot or slow response. As a check for consistency, we directly

measure the step response as shown in Figure S8d and find excellent agreement with data from

Figure S8c. Note that the optimum for the amplitude and phase response corresponds to the optimum

step response (P =−2.2 Hz/deg, I = 1 Hz).

Obviously, such simulations are not only useful for the noise analysis, but can also be used to

find optimum values for the PI controller settings of the PLL system.

Table S4: Optimised settings for the P gain of the RHK PLLpro2 frequency feedback loop yield-
ing a gain peaking smaller than 0.1 dB. The I gain is set to 1 Hz.

fc o B−3dB BENBW P
(Hz) (Hz) (Hz) (Hz/deg)
125 1 103 119 −1.25
125 5 48 57 −0.35
250 1 207 235 −2.51
250 5 96 110 −0.7
500 1 413 467 −5.02
500 2 368 395 −3.14
500 3 305 326 −2.26
500 4 240 264 −1.74
500 5 192 217 −1.40

1000 1 826 929 −10.03
1000 3 609 646 −4.51
1000 5 385 432 −2.81
2000 3 1217 1289 −9.02
2000 5 769 857 −5.61

In Table S4, the ideal P gain values for several combinations of filters and cutoff frequencies are

shown to provide a proven set of filter parameters for the PLLpro2 system useful in practice. As a

rule of thumb, we find that the higher the bandwidth, the more the P gain has to be reduced. We find

that adjusting the P gain is critical, as a wrong setting easily results in gain peaking in the vicinity

of fc. Adjusting the I gain is less critical. High values yield a moderate gain enhancement in a

frequency region below fc. Therefore, we chose a setting of I = 1 Hz for most of our measurements

and also for the simulations presented here. A typical setting for our scan environment for high-

resolution measurements is fc = 500 Hz, o = 3, P =−2.0 Hz/deg and I = 1 Hz.
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4 RMS noise

The RMS-noise δ ftot in the frequency-shift signal ∆ f can be obtained from the integration of the ∆ f

noise power spectral density over the entire frequency range

δ ftot =

 ∞∫
0

D∆ f
tot ( fm)d fm

1/2

. (26)

For the analysis of our experiments, we perform a numerical integration of D∆ f
tot ( fm) from 0 to 10 kHz

as the noise power spectral density is always negligible above 10 kHz.

For the case where the spectral function D∆ f
tot ( fm) is not known, the following approximative

expression has been suggested [19] to estimate the RMS noise:

(δ f ?tot)
2 = (δ f ?th)

2 +(δ f ?ds)
2

=

B∫
0

D̃∆ f
tot d fm

=
f0kBT

πk0Q0A2 B+
2Dz

ds
3A2 B3 . (27)

This expression results from integrating the unfiltered frequency-shift noise D̃∆ f
tot over the bandwidth

B. To reveal the discrepancy between the precise result from Equation 26 and the approximation
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from Equation 27, we represent δ f 2
tot as:

δ f 2
tot = δ f 2

th +δ f 2
ds

=

∞∫
0

D∆ f
th d fm +

∞∫
0

D∆ f
ds d fm

=

∞∫
0

G2
filterD̃

∆ f
th d fm +

∞∫
0

G2
filterD̃

∆ f
ds d fm

=
f0kBT

πk0Q0A2

∞∫
0

G2
filterd fm︸ ︷︷ ︸

BENBW

+
2Dz

ds
A2

∞∫
0

G2
filter f 2

md fm

=
f0kBT

πk0Q0A2 BENBW +
2Dz

ds
A2

∞∫
0

G2
filter f 2

md fm

where the thermal noise component of the RMS noise δ fth can be written in dependence of the

equivalent noise bandwidth as defined in Equation 24. The insertion of BENBW in Equation 27

reveals that these expressions are identical for the thermal noise but not for the detection system

noise. Comparing the approximative result of Equation 27 to the precise result of Equation 26 for

realistic PLL filter settings, we find that the approximation underestimates the total noise typically

by 20% to 30%. A comparison for various filter settings is shown in Table S5.

Table S5: Comparison of precise and approximate determination of the RMS noise. The deviation
is calculated as (δ fds−δ f ?ds)/δ fds according to Equation 26 and Equation 27. The PLL demodula-
tors are modelled as described in detail in Section 3.

PLL system fc (Hz) o deviation
A 300 2 21.9 %
B 120 2 33.4 %
B 400 2 23.6 %
C 250 1 29.8 %
C 250 5 19.7 %
C 500 1 29.2 %
C 500 2 11.4 %
C 500 3 11.4 %
C 500 4 15.4 %
C 500 5 19.8 %
C 1000 5 19.5 %
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