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Harmonics of the symmetric sensor

Considering the boundary conditions for a symmetric sensor is a little more difficult than for a can-

tilever, as once the effects of the tip or interactions are included they will occur at the centre of the

beam. The best method to account for this is to consider that, for odd modes, the cantilever will be

symmetric, and for even modes antisymmetric. Now we can consider the boundary conditions at

one of the clamped ends and at the centre of the beam.

Odd modes

Neglecting tip mass for simplicity, the boundary conditions for the odd modes are

Φi(0) = 0 (1)

dΦi(0)
dx

= 0 (2)

dΦi(L/2)
dx

= 0 (3)

d3Φi(L/2)
dx3 = 0 (4)

Thus, considering the normalised spatial solution as

Φi(x) = b1 cos(βix)+b2 sin(βix)+b3 cosh(βix)+b4 sinh(βix) , (5)

where

β
4
i =

ρAω2
i

EI
. (6)
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This can be written as the following matrix equation

D



b1

b2

b3

b4


=



0

0

0

0


, (7)

where

D =



1 0 1 0

0 1 0 1

−sin(βiL/2) cos(βiL/2) sinh(βiL/2) cosh(βiL/2)

sin(βiL/2) −cos(βiL/2) sinh(βiL/2) cosh(βiL/2)


. (8)

Now for a nontrivial solution detD = 0. This gives the resonance conditions

cosh(βiL/2)sin(βiL/2)+ cos(βiL/2)sinh(βiL/2) = 0 (9)

From equations 1 and 2 we can see that

b1 =−b3 b2 =−b4 (10)

and from Equation 3 we can get the ratio between the constants:

b1

b2
=

cos(βiL/2)− cosh(βiL/2)
sin(βiL/2)+ sinh(βiL/2)

(11)
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Even modes

For the even modes the boundary conditions are slightly different

Φi(0) = 0 (12)

dΦi(0)
dx

= 0 (13)

Φi(L/2) = 0 (14)

d2Φi(L/2)
dx2 = 0 (15)

thus for these cases

D =



1 0 1 0

0 1 0 1

cos(βiL/2) sin(βiL/2) cosh(βiL/2) sinh(βiL/2)

−cos(βiL/2) −sin(βiL/2) cosh(βiL/2) sinh(βiL/2)


. (16)

giving a condition for resonance of

cosh(βiL/2)sin(βiL/2)− cos(βiL/2)sinh(βiL/2) = 0 (17)

As before, from equations 12 and 13 we can see that

b1 =−b3 b2 =−b4 (18)

but Equation 14 gives a slightly different ratio between the constants:

b1

b2
=

sinh(βiL/2)− sin(βiL/2)
cos(βiL/2)− cosh(βiL/2)

(19)
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Odd modes - including tip

Including the mass of the tip requires a simple change of the 4th boundary condition to

EI
d3Φi(L/2)

dx3 =−
mtip

2
ω

2
i Φi(L/2) (20)

Again, writing this as a matrix equation,

D



b1

b2

b3

b4


=



0

0

0

0


, (21)

where

D =



1 0

0 1

−sin(βiL/2) cos(βiL/2)

sin(βiL/2)+ 1
2γi

cos(βiL/2) −cos(βiL/2)+ 1
2γi

sin(βiL/2)

· · ·

· · ·

1 0

0 1

sinh(βiL/2) cosh(βiL/2)

sinh(βiL/2)+ 1
2γi

cosh(βiL/2) cosh(βiL/2)+ 1
2γi

sinh(βiL/2)


(22)

where

γi =
EIβ 3

i

mtipω2
i

(23)
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Now for a nontrivial solution detD = 0. This gives the resonance conditions

cosh(βiL/2)sin(βiL/2)+ cos(βiL/2)sinh(βiL/2)

+
1

2γi

(
−1+ cos(βiL/2)cosh(βiL/2)

)
= 0 . (24)

To calculate the frequencies, we must first combine Equation 23 with Equation 6 to remove the ωi

dependence in the definition of γi:

γi =
mb

mtipβiL
=

1
m∗βiL

, (25)

where mb is the mass of the beam, and m∗ is the ratio of the tip mass to the beam mass. Using this

form of γi in Equation 24 allows the the dimensionless quantity βiL to be solved for any m∗ by a

simple numerical method such as Newton-Raphson. Dimensions can be subsequently added to cal-

culate ωi.

As equations 1, 2 and 3 are still valid, the ratio between the constants remains as

b1

b2
=

cos(βiL/2)− cosh(βiL/2)
sin(βiL/2)+ sinh(βiL/2)

(26)

Even modes - including tip

For the even modes the first three boundary conditions are also unaffected by the tip, and the fourth

changes to

EI
d2Φi(L/2)

dx2 =
Itip

2
ω

2
i

dΦi(L/2)
dx

, (27)

where Itip is the moment of inertia of the tip.
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Writing the four new conditions as a matrix

D =



1 0

0 1

cos(βiL/2) sin(βiL/2)

−cos(βiL/2)+ εi
2 sin(βiL/2) −sin(βiL/2)− εi

2 cos(βiL/2)

· · ·

· · ·

1 0

0 1

cosh(βiL/2) sinh(βiL/2)

cosh(βiL/2)− εi
2 sinh(βiL/2) sinh(βiL/2)− εi

2 cosh(βiL/2)


, (28)

where

εi =
Itipω2

i

EIβi
(29)

This gives a resonance condition of

cosh(βiL/2)sin(βiL/2)− cos(βiL/2)sinh(βiL/2)

+
εi

2
(
−1+ cos(βiL/2)cosh(βiL/2)

)
= 0 . (30)

To calculate the frequencies we must first combine Equation 29 with Equation 6 to remove the ωi

dependence in the definition of εi:

εi =
Itip(βiL)3

L2mb
= I ∗(βiL)3 , (31)

where I ∗ is the ratio of the moment of inertia of the tip to the beam mass multiplied by the beams

length squared. This ratio, while physically meaningless, as mbL2 is not the moment of inertia of

the beam for any relevant rotational axis, provides a dimensionless constant to solve Equation 30.
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Again βiL can be solved for any I ∗ by the Newton–Raphson method and dimensions can be added

to calculate ωi.

Again as equations 12, 13 and 14 are still valid the ratio between the constants remains as

b1

b2
=

sinh(βiL/2)− sin(βiL/2)
cos(βiL/2)− cosh(βiL/2)

(32)

Static Spring Constants

Static spring constants are not normally (by definition) linked to the modes. However, they are

linked to the symmetry and boundary conditions. Thus, the even and odd modes relate to two sepa-

rate static spring constants. One for the end of the tip being pushed normal to the beam (knorm), and

the other for the tip being pushed parallel to the beam ( klat).

Calculating knorm

In the normal case our boundary conditions are now

Φi(0) = 0 (33)

dΦi(0)
dx

= 0 (34)

dΦi(L/2)
dx

= 0 (35)

EI
d3Φi(L/2)

dx3 =
Fnorm

2
(36)

where Fnorm is the force on the tip normal to the beam. The factor of two is because we are only

considering the force felt by half of the beam.

The general static spatial solution is

Φi = A+Bx+Cx2 +Dx3 (37)
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from Equation 33 and Equation 34 we get

A = 0 and B = 0 . (38)

With Equation 35 we get

C =−3DL
4

(39)

and finally using Equation 36 we can show

D =
Fnorm

12EI
(40)

combining this with Equation 39

C =
−FnormL

16EI
(41)

Therefore giving the solution of x for these boundary conditions as

z =
Fnorm

4EI

(
1
3

x3 − 1
4

Lx2
)
. (42)

Considering the deflection a x = L/2

Fnorm =
−192EI

L3 Anorm (43)

Therefore using Hooke’s law, the static spring constant of the normal mode of a double-ended

tuning-fork sensor is

knorm =
192EI

L3 . (44)
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Calculating klat

In the lateral case our boundary conditions are now

Φi(0) = 0 (45)

dΦi(0)
dx

= 0 (46)

Φi(L/2) = 0 (47)

EI
d2Φi(L/2)

dx2 =−FlatH
2

(48)

where Flat is the force on the tip parallel to the beam, and H is the tip length. The factor of two is

because we are only considering the force felt by half of the beam.

The general static spatial solution is still

Φi = A+Bx+Cx2 +Dx3 (49)

from Equation 45 and Equation 46 we get

A = 0 and B = 0 (50)

as before. With Equation 47 we get

C =−DL (51)

and finally using Equation 48 we can show

D =
−FlatH
4EIL

(52)
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combining this with Equation 51

C =
FlatH
8EI

(53)

Therefore giving the solution of x for these boundary conditions as

z =
FlatH
4EI

(
1
2

x2 − 1
L

x3
)
. (54)

Considering the deflection a x = L/2, z = 0, as expected. Considering the first derivative of the

deflection

dz
dx

=
FlatH
4EI

(
x− 3

L
x2
)
. (55)

at x = L/2

dz(L/2)
dx

=
FlatHL
16EI

. (56)

However as Alat =−H dz(L/2)
dx

Flat =−16EI
H2L

Alat (57)

Therefore using Hooke’s law, the static spring constant of the lateral mode of a double-ended

tuning-fork sensor is

klat =
16EI
H2L

. (58)

S10


