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Appendix 1: Tip–sample interaction model

In [1] a tip–sample interaction model is suggested, which includes surface energy hysteresis. The

model was based on a DMT model. In the original formulation, the attractive and repulsive parts are

handled separately (the attractive part was called “long-range dissipative interfacial interactions”).

Using a slightly different notation, they can be combined into one expression as follows
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where H, R, a0, γ are the Hamaker constant, tip radius, intermolecular distance, and surface energy,

respectively, E∗ is the reduced elasticity E∗ =
[
(1−ν2

tip)/Etip +(1−ν2
sample)/Esample

]−1
and ν and

E are the Poisson’s ratio and Young’s modulus of the tip and the sample. We note that this model

includes only a single parameter γ , which is the change in surface energy (J/m2) between approach

and retract, to describe the strength of the hysteresis. Two parameters are given in [1], one for d < a0

and a separate one for d > a0. Although that is a more general case, it means that the force described

by that model is not necessarily continuous at d = a0. We have restricted ourselves only to the case

where the force is continuous.

This model has been shown to match several features of experimental energy dissipation mea-
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surements, and it is well suited to analysis (e.g., the method of averaging). However, for numerical

simulation it can present a problem. The switch between the approach and retract forces happens in-

stantaneously. This means that the force is discontinuous at the switch, which is clearly nonphysical.

This may cause difficulties for the differential equation solver, and it can also introduce nonphysical

high-frequency oscillation of the cantilever into the simulation.

Therefore, we suggest a modification that allows the force to be continuous everywhere.

Initially, ḋ < 0 and Fts(d) = Fts,app(d). If, at time t = t0 and d = d0, the velocity switches

sign from ḋ < 0 to ḋ > 0, then the force for time t > t0 is defined as Fts(d) = Fts,ret(d) +(
Fts,app(d0)−Fts,ret(d0)

)
e−(d−d0)/λ , where λ is a decay length (we use 0.1 nm typically). In other

words, when the velocity switches, the current trajectory is smoothly transitioned into the new trajec-

tory. The difference between the current and new trajectories decays exponentially. This is illustrated

in Figure S1.
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Figure S1: Example of the tip–sample interaction force model used in the simulations.

The above definition is sufficient for single-frequency AFM (e.g., AM-AFM). However, for bi-

modal AFM, it is possible that the velocity might reverse two (or more) times, and the second

reversal might happen before the transition to the new trajectory is complete. Therefore, we instead

use this definition: If the velocity reverses at time t = t0 and d = d0, then let F∗ be the force at

time t0. Then the force for time t > t0 is defined as Fts = Fts,m(d)+(F∗−Fts,m(d0))e(−d−d0)/λ , and

“m” corresponds to either “app” or “ret”, depending on which direction the velocity has switched

to. This allows an arbitrary number of reversals at arbitrary distances, while still always maintaining

continuity of the forces.
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Appendix 2: Derivation for cantilever energy

By definition, energy is force times displacement. The inertia force on the cantilever is given by

miq̈i and the displacement is qi. Therefore the kinetic energy at time t is Ei(t) =
∮

miq̈idqi =∫ t
0 miq̈iq̇idt. Assuming a harmonic response at the natural frequency, qi = Ai cos(ωit + φ), then

q̇i =−ωiAi sin(ωit +φ) and q̈i =−ω2
i Ai cos(ωit +φ). So Ei(t) = miω

3
i A2

i
∫ t

0 sin(ωit +φ)cos(ωit +

φ)dt=miω
2
i A2

i cos2(ωit)/2. The maximum kinetic energy over the cycle is miω
2
i A2

i /2 = kiA2
i /2.

The spring force on the cantilever is given by kiqi. Therefore the potential energy at time t is

Ei(t) =
∮

kiqidqi =
∫ t

0 kiqiq̇idt. Using a similar derivation, it can be shown that the maximum kinetic

energy over the cycle is equal to the maximum potential energy over the cycle (the maximums

happen at different times). Therefore, the body of the paper could have been formulated in terms of

the potential energy stored in each eigenmode with no change in the conclusions.
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