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Details of the theoretical model



Spectral properties

To obtain the spectral properties of the superconductor needed to describe our experiments, we solve

the Usadel equation [1,2], including all the perturbations needed for our purpose. Pair breaking is

included by the dimensionless pair-breaking strength

ζ =
1
2

(
B
Bc

)2

(1)

for a thin film with a magnetic field B applied parallel to the film plane, with the critical field Bc.

It is related to the magnetic-impurity scattering time τs used in [3] by ζ = h̄/2∆0τs, where ∆0 is

the superconducting pair potential at T = 0 and B = 0. The quasiparticle life time due to electron-

phonon scattering is included by adding a small imaginary part (Dynes parameter [4]) Γ = h̄/2τE to

the energy, where τE is the inelastic scattering time (see below). We also include the Zeeman energy

±µBB, and spin-orbit scattering with scattering strength bso = h̄/3∆τso. Since all our junctions

have tunnel barriers, we neglect the proximity effect, and assume that the spectral properties of our

superconducting wires are independent of position, i.e., we neglect gradient terms in the Usadel

equation. The complete Usadel equation with all terms included can be found in [5].

Kinetic equation for charge imbalance

We describe charge imbalance using the kinetic equation derived by Schmid et al. [3]. To apply

the kinetic equation to our experiments, we consider a superconducting wire of cross-section A

and normal-state diffusion coefficient DN along the x-axis, an injector junction with normal-state

conductance Ginj placed at x = 0, and a detector junction with normal-state conductance Gdet placed

at x = d. We assume that both the wire cross-section and the junction width are small compared to

the charge-imbalance relaxation length. We are interested only in the stationary case. The kinetic

equation for the transverse-mode distribution function fT then reads

DNMT(E,E)
d2

dx2 fT(E)+KT(E,{ fT})+QT(E)+PT(E) = 0 (2)
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Here, MT(E,E ′) = N1(E)N1(E ′)+N2(E)N2(E ′), and N1 and N2 are the real parts of the normal and

anomalous Green’s function found solving the Usadel equation (N1 is the density of states). The

collision integral describing energy relaxation is

KT(E,{ fT}) = −
∫

dE ′
µ(E−E ′)MT(E,E ′)

cosh(E/2kBT )cosh(E ′/2kBT )sinh((E−E ′)/2kBT )

×
[

cosh2
(

E
2kBT

)
fT(E)− cosh2

(
E ′

2kBT

)
fT(E ′)

]

where

µ(E) =
sign(E)E2

14ζ (3)(kBTc)3τE

within the Debye model, and τE is the inelastic scattering time for electrons at the Fermi surface in

the normal state at Tc. Charge relaxation is given by

QT(E) = −2
∆

h̄
N2(E) fT(E),

and the injection rate is

PT(E) =
Ginj

2N0Ωe2 N1(E) finj(E,V )

finj(E,V ) =
1
4

[
tanh

(
E + eV
2kBT

)
− tanh

(
E− eV
2kBT

)]

where Ω is the injection volume and N0 is the density of states of the superconductor per spin. The

current flowing from S to N through the detector junction held at zero bias voltage is given by

Idet =
Gdet

e

∫
dEN1(E) fT(E). (3)
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Approximate analytical solution (without cooling)

At low temperatures, inelastic scattering is expected to freeze out. To obtain a simple analytical

solution for T → 0, we therefore neglect the collision integral, i.e., the cooling of the quasiparticles.

We also assume that the injector junction is infinitesimally small, with inverse injection volume

Ω−1 = A −1δ (x). Then the kinetic equation can be easily solved by inserting the Ansatz

fT(x,E) = a(E)e−|x|/λQ∗(E), (4)

which yields the two conditions

λQ∗(E) = ξ

√
N2

1 +N2
2

2N2
(5)

a(E) = Ginj
ρNλQ∗

2A

N1

N2
1 +N2

2
finj(E,V ) (6)

where we have introduced the dirty-limit coherence length ξ =
√

h̄DN/∆ and the normal-state resis-

tivity of the superconductor ρN = (2N0e2DN)
−1. Inserting this solution into (3) yields the detector

current

Idet =
GinjGdet

e

∫
dE

ρNλQ∗

2A

N2
1

N2
1 +N2

2
e−d/λQ∗ finj(E,V ) (7)

Using the symmetry properties of the various quantities, we finally obtain

gnl =
dIdet

dVinj
= GinjGdet

∫ N2
1

N2
1 +N2

2

ρNλQ∗

2A
e−d/λQ∗ f ′(E− eVinj)dE, (8)

where f ′(E) = cosh−2 (E/2kBT )/4kBT is the derivative of the Fermi function.

Numerical solution

For a full numerical solution, we discretize the equation on grid points Ei and xk. The kinetic

equation (2) then turns into a linear equation system for the distribution function fik = fT(xk,Ei).
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This equation system is solved by standard library routines [6]. The size of the grid points is chosen

small enough to not affect the results (δE ≈ 10 µeV, δx = 500 nm). From the numerical solution,

we obtain the nonlocal conductance as a function of bias and contact distance, and analyze it in the

same way as the experimental data [7] to obtain the relaxation length.

Spin imbalance

In order to describe the local conductance of the injector junctions, we use the theory of tunneling

in superconductors in high magnetic field [8,9]. The contribution of a single spin projection σ =±1

to the tunnel conductance is given by

gσ =
Ginj

2
(
1−σPinj

)∫
N1σ (E) f ′dE, (9)

where Pinj is the spin polarization of the tunnel conductance, and N1σ (E) is the density of states

in the superconductor for spin projection σ , obtained by solving the Usadel equation. The injector

conductance is given by the sum of the two spin contributions,

gloc = g↓+g↑, (10)

whereas the differential spin current

dIσ

dVinj
∝ g↓−g↑ (11)

is proportional to their difference. From fits of the local conductance, we can therefore infer the bias-

dependent spin injection rate. A simple tunnel Hamiltonian model for the spin-related contribution

to the detector current yields [10,11]

IS
det =

GdetPdet

2e ∑
σ

σ

∫
N1σ (E) [ fσ (E)− f0(E)]dE, (12)
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where fσ (E) is the quasiparticle distribution for spin σ in the superconductor, and f0 denotes the

Fermi distribution in the ferromagnetic detector junction. Combining (11) and (12), we expect the

contribution of spin accumulation to the nonlocal conductance to be

gS
nl ∝ Pdet

(
g↓−g↑

)
. (13)
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