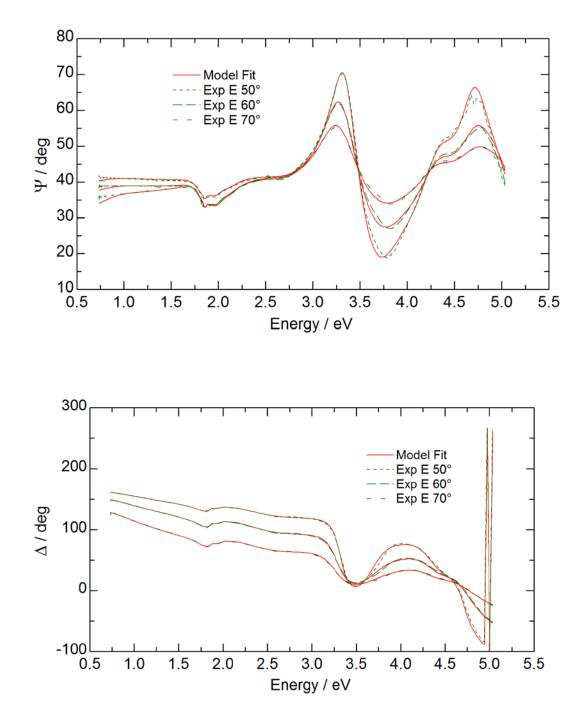
Supporting Information

for

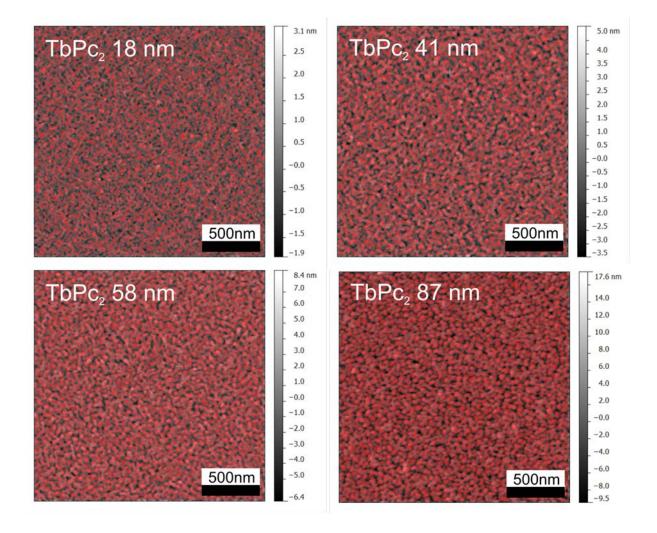
Optical properties and electrical transport of thin films of terbium(III) bis(phthalocyanine) on cobalt


Peter Robaschik¹, Pablo F. Siles^{2,3}, Daniel Bülz¹, Peter Richter¹, Manuel Monecke¹, Michael Fronk¹, Svetlana Klyatskaya⁴, Daniel Grimm^{2,3}, Oliver G. Schmidt^{2,3}, Mario Ruben^{4,5}, Dietrich R. T. Zahn¹, and Georgeta Salvan^{*1}

Address: ¹Semiconductor Physics, Technische Universität Chemnitz, Reichenhainer Straße 70, 09107 Chemnitz, Germany, ²Material Systems for Nanoelectronics, Technische Universität Chemnitz, Reichenhainer Straße 70, 09107 Chemnitz, Germany, ³Institute for Integrative Nanosciences, IFW Dresden, Helmholtzstraße 20, 01069 Dresden, Germany, ⁴Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany, and ⁵Université de Strasbourg, Institut de Physique et de Chimie des Materiaux de Strasbourg, CNRS UMP 7504, 23 Rue du Loess, 67034 Strasbourg Cedex 2, France

Email: Georgeta Salvan* - salvan@physik.tu-chemnitz.de

* Corresponding author


Ellipsometry and AFM analysis

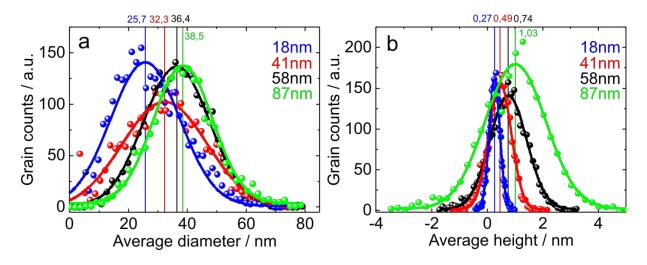
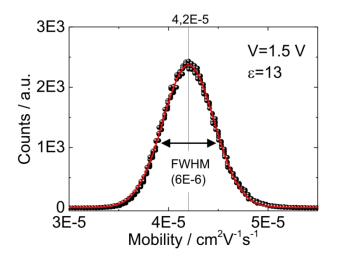

Ellipsometry data and modelling

Figure S1: Ellipsometry data of the 41 nm TbPc₂ on Co sample (green dashed lines) and the corresponding model fit (red solid lines).


AFM analysis

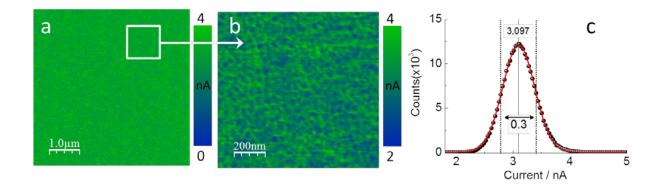

Figure S2: AFM topography images for statistical analysis of TbPc₂ grain size evolution as a function of film thickness. Gray-scaled images correspond to the original AFM images shown in Figure 4. Red-colored areas correspond to the analysis grain definition, each red area represent a grain over the organic surface. Statistical analysis allows quantifying parameters such as the number of grains, height and diameter.

Figure S3: Statistical analysis of grain height and diameter as a function of the thickness of TbPc₂. Histograms are obtained from the grain definition shown in Figure S2.

Figure S4: Statistical error estimation for charge carrier mobility given a dielectric constant of 13. Analysis is performed from a current map at 1.5 V. The error is defined as the FWHM value of a Gaussian fit showing the mobility value for all the 512 \times 512 data points of the current map.

Figure S5: (a) Current map obtained at 1.5 V on an 80 nm thick TbPc₂ sample. (b) Higher magnification of current map in (a) for a $1 \times 1 \mu m^2$ area as indicated in (a). (c) Electrical current dispersion considering all of the 512 × 512 data points of current map shown in (a).