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Derivation of the two-spring model



Figure S1 shows the two-spring model employed in the paper. Point A ("tip") is constrained to move

on the vertical axis (z-axis), while point B ("surface-bonded lower end of the molecule = carboxylic

oxygen atom") is constrained to slide on the horizontal axis (x-axis). Point C is fixed. At a given

angle α0, springs S and L are relaxed, at lengths S0 and L0, respectively. In the course of the lifting

experiment, the molecule (spring L) is lifted from α0 = 0 to α0 = 90◦. For each α0, the geometry

of the model is adjusted such that both springs L and S are relaxed for z =
√

L2
0−S2

0. At each α0,

the tip (point A) oscillates around the equilibrium z (qPlus sensor). If point A oscillates around its

equilibrium position, point B will slide in the horizontal direction, and both springs L and S will be

compressed or extended, depending on the direction of the displacement of point A.
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Figure S1: Sketch of the two-spring model employed in the paper.

We are interested in the vertical gradient of the vertical force Fz acting at point A around its equilib-

rium position, since this determines the frequency shift of the qPlus sensor in our experiment.

At point A, the following equation holds for the force Fz

Fz =−FL sinα, (1)
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while at point B we have

FS =−FL cosα. (2)

The sign convention for forces and displacements is illustrated in the figure. For the springs we have

FS = kS∆S (3)

and

FL =−kL∆L. (4)

Note that kL� kS. Finally, there are three geometrical relations, namely

S0 +∆S
L0−∆L

= cosα, (5)

z
L0−∆L

= sinα, (6)

(S0 +∆S)2 + z2 = (L0−∆L)2. (7)

Eliminating FS, FL, α , ∆S and ∆L, we obtain from Equations 1–7

L2
0z2(

z+
Fz

kL

)2 = z2 +S2
0

(
1+

Fz

kSz−Fz

)2

, (8)

which yields Fz(z) as a function of the parameters L0, S0, kL, and kS. In principle, Equation 8

allows the determination of ∂Fz/∂ z. However, we will derive a simplified expression for ∂Fz/∂ z by

analysing two limiting cases of Equation 8.

Equation 8 can be discussed in two limiting cases:

• kL→ ∞, i.e. the molecule is modeled as a rigid rod. In that case, we can simplify Equation 8,
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solve for Fz and find

FkL→∞
z =−kSz

 S0√
L2

0− z2
−1

=−kSz

 cosα0√
1− z2/L2

0

−1

 , (9)

with cosα0 = S0/L0. For horizontal L and S springs, i.e. z = 0, or for relaxed springs, i.e. z =√
L2

0−S2
0 at arbitrary α0, the equation yields FkL→∞

z = 0, as it must. Furthermore, FkL→∞
z ≥

0 for z ≤
√

L2
0−S2

0, FkL→∞
z < 0 for z >

√
L2

0−S2
0, and FkL→∞

z → −∞ for z→ L0. From

Equation 9 the force gradient becomes

∂FkL→∞
z

∂ z
= −kS

[
S0z2

(L2
0− z2)3/2 +

S0

(L2
0− z2)1/2 −1

]
(10)

= −kS

[
z2 cosα0

L2
0(1− z2/L2

0)
3/2 +

cosα0

(1− z2/L2
0)

1/2 −1
]

(11)

and, at the relaxed position of the springs z =
√

L2
0−S2

0,

∂FkL→∞
z

∂ z

∣∣∣∣
z=
√

L2
0−S2

0

=−kS tan2
α0 ≡−k′S (12)

For α0 = 0, the force gradient vanishes, just as the force itself, as is to be expected. As

α0 increases, the influence of the lateral corrugation on the force gradient and therefore the

measured frequency shift increases. At α0 = 90◦, the force gradient becomes infinite because

of the infinite stiffness of the rod.

• kS→ ∞, i.e. an infinitely strong lateral surface corrugation. In that case, we find from Equa-

tion 8

FkS→∞
z =−kLz

1− L0√
S2

0 + z2

=−kLz

1− 1

cosα0

√
1+ z2/S2

0

 , (13)

with cosα0 = S0/L0. For horizontal L and S springs, i.e. z = 0, or for relaxed springs, i.e. z =√
L2

0−S2
0, at arbitrary α0, the equation yields FkS→∞

z = 0, as it must. Furthermore, FkS→∞
z ≥ 0
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for z≤
√

L2
0−S2

0, FkS→∞
z < 0 for z >

√
L2

0−S2
0, and FkS→∞

z →−zkL→−∞ for z→ ∞. From

Equation 13 the force gradient becomes

∂FkS→∞
z

∂ z
= −kL

[
1+

L0z2

(S2
0 + z2)3/2 −

L0

(S2
0 + z2)1/2

]
(14)

= −kL

[
1+

z2

S2
0 cosα0(1+ z2/S2

0)
3/2 −

1
cosα0(1+ z2/S2

0)
1/2

]
(15)

which yields

∂FkS→∞
z

∂ z

∣∣∣∣
z=
√

L2
0−S2

0

=−kL sin2
α0 ≡−k′L (16)

For α0 = 0, the force gradient vanishes, just as the force itself, as is to be expected. As α0

increases, the force gradient and therefore the measured frequency shift increases, because

varying z now requires increasing length changes of the rod. At α0 = 90◦, the force gradient

becomes −kL, i.e. equal to the stiffness of the rod.

In our experiment, we expect the compressive and tensile stiffness of the molecule to be much larger

than the lateral corrugation. Therefore, for most angles α0 the limit kL→∞ is a realistic model of our

experiment. Only for angles α0 which are close to 90◦ we expect the finite stiffness of the molecule

(spring L) to become relevant, because then the effective spring constant k′S (Equation 12) diverges,

and thus the intrinsic stiffness of L becomes smaller than k′S. Hence, the total force gradient ∂Fz/∂ z

can be represented by two effective springs k′S and k′L added in series. At most angles, spring k′S is

the softer (and hence the only relevant) one. Only close to the upright configuration does k′L become

softer and relevant. The total force gradient of our model is thus given by

∂Fz/∂ z
∣∣∣∣
z=
√

L2
0−S2

0

=−
(

1
k′L

+
1
k′S

)−1

=−
k′Lk′S

k′L + k′S
=− kL sin2

α0 · kS tan2 α0

kL sin2
α0 + kS tan2 α0

(17)

The implications of this expression for the experiment is discussed in the paper.
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