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Details of mathematical modeling 
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Calculation of order of stress singularity 

Bogy’s study [1] on stress singularities at bimaterial wedge interfaces is used to determine the stress at the 

vicinity of the contact edge. Figure S1a is an illustration of a mushroom-like fiber and a smooth substrate. 

 

Figure S1: (a) An illustration of a mushroom-like fiber attached to a rigid smooth substrate under full 

friction condition. (b) Order of singularity (p1 − 1) calculated for a full-friction interface by using 

Equation S1 and a frictionless interface by using Equation S2 at the tip apex as a function of the edge 

angle θ. Stresses are finite for θ ≤ 45° and singular for θ > 45° at the tip apex for a full-friction interface. 

The singular stress threshold increases to 90° for a frictionless contact. All of the analyses in this work are 

carried out for a full-friction interface. 

 

Full-friction contact 

Here, the fiber material is a soft incompressible elastomer (ν = 0.5) and the substrate material is rigid. For 

such bimaterial interfaces, the order of stress singularity can be calculated simply by finding the roots of 

)θ(sin)θ(cos 222 pp D .        (S1) 

Let p1 be real and the smallest root of D  in 0 < p < 1. If p1 exists, then the stresses are singular at d = 0, 

where d is the distance from the edge of contact. The magnitude of the normal stress at the vicinity of the 

wedge apex is )(z

  dO  where α = 1 − p1. If no zero of D  in 0 < p < 1 and 0/ dpdD  when p = 1, 
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then the normal stress is finite, )1(z O . Figure S1b plots the smallest root of D  as a function of the 

wedge angle θ. For θ > 45º, p1 is real and the normal stress is singular at the contact edge. For θ ≤ 45º, 

there exists no root of D  smaller than one and the normal stress at the contact edge is finite. Thus, edge 

angles less than 45º result in finite stresses at the interface. 

 

Frictionless contact 

Equation 1 is valid for perfectly bonded surfaces at which relative tangential displacement is constrained, 

i.e., full-friction interfaces. For slip boundaries at which there is no friction between the surfaces, and one 

of the adhering surfaces is much softer than the opposing surface; one can use the analysis provided by 

Gdoutos and Theocaris [2]. Assuming that the friction coefficient between the surfaces is zero, one can 

obtain the order of stress singularity by finding the roots of 

)θ2sin()θ2sin( pp D .        (S2) 

 

Pull-off load calculation for array measurements 

The load measured during an adhesion experiment is the total of the load contribution of each fiber in 

contact with an indenter. The relative displacement and the shape of the indenter dictate the deformation 

of each individual fiber in the array. This information can be used to calculate the overall load as a 

function of the relative displacement provided that the relation between deformation and load is known 

for an individual fiber. Assuming the fiber material is linear elastic, the relationship between axial load 

and deformation is defined by using a linear spring constant k. The maximum tensile load an individual 

fiber can exert on the indenter is limited by the pull-off load,  

s
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t σπaps  .          (S3) 
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This implies that a fiber loses contact once the resultant load due to stretching on the fiber reaches ps. The 

magnitude of deformation at the onset of pull-off can be calculated by using the linear spring constant k as 
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As illustrated in Figure S2, for adhesion experiments performed on an array of fibers with a rigid backing 

using a hemispherical indenter of radius R, the highest tensile load (pull-off) is reached when the fibers 

contacting the tip of the hemisphere return to their nominal height in the retraction step [3,4]. At this 

instance, the outermost fibers are stretched by Δs since contact cannot be sustained beyond this 

deformation. By using this information, one can calculate the apparent contact radius c between the 

indenter and the fiber geometrically as 

2/1)2( sRc  .          (S5) 

Assuming there are ρ number of fibers per unit area in the fiber array, the number of fibers in contact at 

pull-off can be calculated from the apparent circular contact area at pull-off, 

s

2 ρπ2ρπ  RcN .         (S6) 

The force an individual fiber exerts on the hemispherical indenter depends on the location where it 

contacts the indenter. Since the topography of the hemisphere is known and the fibers in contact should 

follow this topography, we have the deflection information, and thus know the load each fiber exerts on 

the indenter. Since load and deformation are linearly related to each other, one can define an average 

extension Δav for all fibers in contact at pull-off. This is done by finding the height h of a cylinder with 

radius c whose volume is equal to the portion of the hemisphere in contact with the array. This average 

extension is  
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The approximation Δav ≈ Δs/2 is valid only when Δs << R. The pull-off load for the array of fibers can then 

be calculated as 
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Inserting Equation S4 and Equation S6 into Equation S8 yields 
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Assuming the same indenter is used to test both the cylindrical and mushroom-like fiber arrays, ρ and k 

are the same for both arrays, and the base radius a of an individual mushroom-like fiber in the array is 

equal to the radius of a cylindrical fiber. The ratio of the mushroom-like fiber array pull-off force Ps,m to 

the pull-off force obtained from the cylindrical fiber array Ps,c becomes 
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Here, subscripts m and c stand for mushroom-like and cylindrical fiber arrays, respectively. 

 

Figure S2: Schematics of a hemispherical indentation test to measure the pull-off load for an array of 

fibers. After the fibers are compressed with the indenter (approach), the indenter is retracted from the 
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fiber arrays. Maximum tensile load (pull-off load) is achieved when the fiber attached to the middle of the 

indenter is back to its nominal height h [3,4].  
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