Supporting Information for Viability and proliferation of endothelial cells upon exposure to GaN nanoparticles Tudor Braniste^{1,2}, Ion Tiginyanu¹, Tibor Horvath², Simion Raevschi³, Serghei Cebotari², Marco Lux². Axel Haverich² and Andres Hilfiker^{2,*} Address: ¹National Center for Materials Study and Testing, Technical University of Moldova, bv. Stefan cel Mare 168, MD-2004 Chisinau, Republic of Moldova, ²Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl Neuberg Str. 1, D- 30625 Hannover, Germany and ³Department of Physics and Engineering, State University of Moldova, str. Alexe Mateevici 60, MD-2009 Chisinau, Republic of Moldova Email: Andres Hilfiker* - hilfiker.andres@mh-hannover.de * Corresponding author Details regarding nanoparticle characterization, chemical analysis measurements and schematics of the surface functionalization process with nanoparticles **S1** Figure S1: TEM images of GaN nanoparticles grown on a sacrificial layer of ZnO nanoparticles (a) and HRTEM of a single nanoparticle (b); EDX analysis is presented in (c) and comparative Raman measurements in (d). Figure S2: Zinc concentration released in the medium after incubation of EC with different types of nanoparticles at the concentration of 100 μ g/mL, positive control is medium without any nanoparticles and negative control are samples with ZnCl₂ in the same concentration as ZnO and GaN. Figure S3: The concentration of zinc released in the culture medium after the incubation of EC with different concentrations of GaN nanoparticles. Figure S4: Schematic of the process of surface functionalization with GaN nanoparticles: 1. Mixing the two components of silicone; 2. Silicone spreading on the glass surface by spin coating; 3. Immediately after coating process was done the suspension of nanoparticles in deionized water was added; 4. During 12 h at 60 °C all the water evaporated, after that samples were sterilized at 180°C for 4 h; 5. Mounting coated glasses in culture plates and incubating endothelial cells on them.