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S1 Simple method to solve the regular solution equations efficiently. 
Here we consider the SCF route to optimise the regular solution free energy. We take 

the simplest one-gradient case without surfaces as an example and trust that the reader can 

generalise the protocol to include surfaces and to account for more than one dimension. The 

starting point is Equation 6: 

𝐹𝐹 = ∑ 𝜑𝜑(𝑧𝑧) ln𝜑𝜑(𝑧𝑧) + 𝜑𝜑V(𝑧𝑧) ln𝜑𝜑𝑉𝑉(𝑧𝑧) +𝜒𝜒𝜑𝜑(𝑧𝑧)〈𝜑𝜑V(𝑧𝑧)〉𝑀𝑀
−𝑀𝑀  (S1) 

where we notice that the free energy is a functional of the volume fraction distribution of the 

liquid and the vapour. We also recall that for each coordinate z we have a compressibility 

relation 

𝜑𝜑(𝑧𝑧) + 𝜑𝜑V(𝑧𝑧) = 1 (S2) 

In the self-consistent field (SCF) theory the same free energy is expressed in terms of segment 

densities as well as segment potentials u(z) and uV(z). We take it that these potentials are 

dimensionless, that is they are already normalised by the thermal energy 𝑘𝑘B𝑇𝑇. The potentials 

are going to be used in Boltzmann equations: 

𝐺𝐺(𝑧𝑧) = exp−𝑢𝑢(𝑧𝑧)
𝐺𝐺V(𝑧𝑧) = exp−𝑢𝑢V(𝑧𝑧) (S3) 

In the self-consistent field theory the starting point of the approach is the mean-field free 

energy: 

𝐹𝐹 = ln 𝑞𝑞𝑁𝑁

𝑁𝑁!
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−  ∑ (𝑢𝑢(𝑧𝑧)𝜑𝜑(𝑧𝑧) + 𝑢𝑢V(𝑧𝑧)𝜑𝜑V(𝑧𝑧) )𝑀𝑀

𝑧𝑧=1 + ∑ 𝜑𝜑(𝑧𝑧)𝜒𝜒〈𝜑𝜑V(𝑧𝑧)〉𝑀𝑀
𝑧𝑧=1 + ∑ 𝛼𝛼(𝑧𝑧)[𝜑𝜑(𝑧𝑧) +𝑀𝑀

𝑧𝑧=1

𝜑𝜑V(𝑧𝑧) − 1] (S4) 

It is relatively easy to show that Equations S4 and S1 are the same (we will not prove this 

here). For this we need to know that the single molecule partition functions q are found by the 

summation over corresponding Boltzmann weights: 

𝑞𝑞 = ∑ 𝐺𝐺(𝑧𝑧)𝑀𝑀
𝑧𝑧=1

𝑞𝑞V = ∑ 𝐺𝐺V(𝑧𝑧)𝑀𝑀
𝑧𝑧=1

  (S5) 

and the number of liquid and vapour sites is given by 

𝑁𝑁 = ∑ 𝜑𝜑(𝑧𝑧)𝑀𝑀
𝑧𝑧=1

𝑁𝑁V = ∑ 𝜑𝜑V(𝑧𝑧)𝑀𝑀
𝑧𝑧=1

 (S6) 

The optimisation of the free energy (Equation S4) with respect to the segment potentials leads 

the rule how to compute the volume fractions: 
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𝜑𝜑(𝑧𝑧) = 𝑁𝑁

𝑞𝑞
𝐺𝐺(𝑧𝑧)

𝜑𝜑V(𝑧𝑧) = 𝑁𝑁V
𝑞𝑞V
𝐺𝐺V(𝑧𝑧)

 (S7) 

Optimisation of the free energy (Equation S4) with respect to the segment density leads to the 

rule to compute the segment potential: 

𝑢𝑢(𝑧𝑧) = 𝛼𝛼(𝑧𝑧) + 𝐸𝐸(𝑧𝑧)
𝑢𝑢V(𝑧𝑧) = 𝛼𝛼(𝑧𝑧) + 𝐸𝐸V(𝑧𝑧) (S8) 

where the interaction contribution to the segment potentials are given by 

𝐸𝐸(𝑧𝑧) = 𝜒𝜒〈𝜑𝜑V(𝑧𝑧)〉
𝐸𝐸V(𝑧𝑧) = 𝜒𝜒〈𝜑𝜑(𝑧𝑧)〉 (S9) 

In summary we thus have the situation that 

𝑢𝑢[𝜑𝜑]
𝜑𝜑+𝜑𝜑V=1
������ 𝜑𝜑[𝑢𝑢] (S10) 

In words the left hand side says that the segment potentials depend on the volume fractions 

(that is u given by Equation S8 depends on E which is given in Equation S9 to be a function 

of φ). The right-hand side of Equation S10 says that the volume fractions in Equation S7 can 

be computed from the segment potentials, by two routes, namely via the Boltzmann weights 

(Equation S3) and the partition functions (Equation) S5 which are also traced to Equation S3. 

We need a numerical scheme to find the so-called SCF solution. We need a fixed point for 

which the segment potentials both follow from the volume fractions from which they are 

computed. Or inversely, we need the segment densities which determine the potentials on 

which they depend. Such a fixed point should obey to the compressibility relation of Equation 

S2.  

Self-consistent field solutions must be generated numerically. Once such a solution is 

found we can compute the thermodynamic quantities. Of more than average interest there is 

the grand potential (sum of the surface tensions) Ω𝑆𝑆 of the system. It can be shown that 

Ω𝑆𝑆 = ∑ 𝜔𝜔(𝑧𝑧)𝑀𝑀
𝑧𝑧=1 , where the grand potential density is given by 

𝜔𝜔(𝑧𝑧) = −𝛼𝛼(𝑧𝑧) − 𝜒𝜒(𝜑𝜑(𝑧𝑧)〈𝜑𝜑V(𝑧𝑧)〉+𝜑𝜑V(𝑧𝑧)〈𝜑𝜑(𝑧𝑧)〉)
2

+ 𝜒𝜒𝜑𝜑𝑏𝑏𝜑𝜑V𝑏𝑏 (S11) 

where the bulk volume fractions are found at large values of z or equivalently follow from  

𝜑𝜑𝑏𝑏 = 𝑁𝑁
𝑞𝑞

𝜑𝜑V𝑏𝑏 = 𝑁𝑁V
𝑞𝑞V

 (S12) 
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S2 Calculation of θkink 

 

Figure S1: Calculation of θkink (indicated in the picture as β′). 

θkink can be calculated using cos 𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 = 𝑅𝑅𝑖𝑖
𝑅𝑅𝑝𝑝

Ri and Rp can be calculated from the input 

variables for the surface structure (see Table 1): Ri is (h – Rp) and Rp is 1
2
d.  
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S3 Calculation of ΦS and s at constant ΦS 

To calculate ΦS, first the area per cavity is calculated for a hexagonal packing. 

 

Figure S2: Calculation of area per cavity. 

 Rp, which is in this case equal to 1
2
s (Table 1), is related to L via: 

𝑅𝑅p =
1

2 � 𝐿𝐿
tan (30)

=
√3 
2
𝐿𝐿 

The area per cavity Ahexagon is then given by adding the areas of 12 triangles, i.e., 12 

times (1/2∙Rp∙1/2∙L). 

The area of a cavity Acavity is the area of a circle with radius Rh (see S2). Since d and Ri 

are input parameters, Rh is obtained via Pythagorean theorem, and Acavity = π (Rh)2 

The fraction of solid on the top surface ΦS is then given by ΦS = 1 − 𝐴𝐴cavity
𝐴𝐴hexagon

. 

To calculate s for different c at constant ΦS, first, a constant ΦS has to be defined. This 

sets the ratio Acavity:Ahexagon. The cavity size depends on the value of c, and since the ratio is 

fixed, Ahexagon is obtained per c. This area is used to calculated to an effective Rp,effective, and 

next a surface can be created with s = 2· Rp,effective. 
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