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Extraction of intrinsic electrical transport parameters from measurement 

 

A. Nanowire conductivity 

Nanowire resistance is measured in a four-point probe configuration, and is given by 
dTNW IVR /4  

where TV4  is the voltage drop measured between the inner electrodes and 
dI  the current. For a NW 

of radius R, the conductivity is given by 
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where 
CL is the conduction channel length, defined as the distance between the outer edges of the 

four-point probe electrodes (cf. Ref [1] for more details). 
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B. Carrier mobility 

Charge carrier mobility of the NWs was measured via the field-effect where the number of charges 

in the conduction channel is externally controlled by the applied gate voltage 
GV . The electrical 

response of a NW device is quantified by its extrinsic transconductance 
mg which is found from the 

sub-threshold slope of a transfer curve at fixed source-drain voltage 
SDV : 
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The intrinsic NW transconductance can be obtained by decoupling the device-specific contact 

resistances 
CR : 
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assuming that both source- and drain-electrode contact resistances are equivalent. 

The contact resistance in turn is measured in two point configuration, where the total device 

resistance is given by: 
CNWTot RRR  . 

The intrinsic mobility can thus be found using the expression: 
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where the capacitance C of the NW to the gate electrode is described by: 
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with 
oxt = 300 nm the SiO2 thickness and 

2SiO its dielectric constant. 

C. Carrier density 

Carrier density can be calculated as: 
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with q the electron charge. 

 

 

Dominant doping from surface-states  

Proof for the circumstance that we have doping which is dominated by the surface-states of the 

nanowire is seen by the following consideration: 



S3 

We work with Au-seeded VLS Ge nanowires. From the entire synthesis process [2], one could 

assume that Au atom dopants – which would then be volume-dopants – provide the charge-carriers 

which we have measured in our experiments. 

However, Au dopants in Ge are deep-level acceptors with an activation energy of the order of 100 to 

200 meV (e.g. [3-5]). That is, their ionisation probability at room temperature (our experimental 

condition) would be below 1%. Considering our experimentally measured carrier densities between 

1015 to 1018 cm−3, we would have 1017 to 1020 cm−3 Au-atom density in the Ge nanowires. This large 

amount of Au atoms however has not been detected in TEM of our nanowires (cf. Figure 1b; [2]) but 

would have been easily detectable by TEM techniques (see e.g. [6,7])  

 

Weak switching behaviour of Ge NWs (transfer characteristics) 

The poor switching behaviour is typical for VLS synthesized Ge NWs and is a consequence of the 

generally high doping of the NWs through surface states up to 1018 cm−3 (several orders of 

magnitude higher than intrinsic Ge). 
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