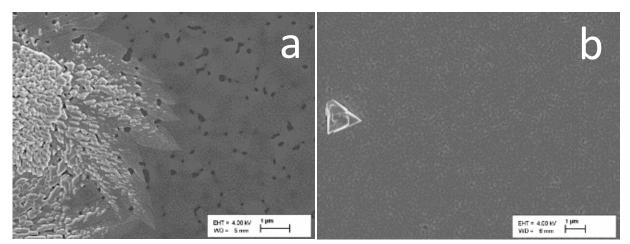
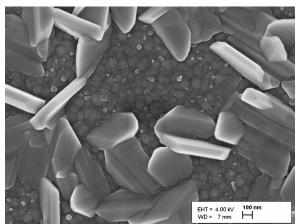
Supporting Information

for

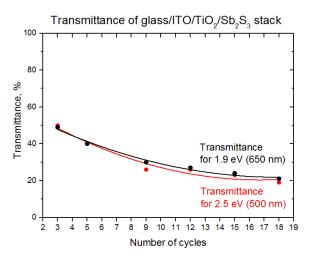
Sb₂S₃ grown by ultrasonic spray pyrolysis and its application in a hybrid solar cell


Erki Kärber¹*, Atanas Katerski¹, Ilona Oja Acik¹, Arvo Mere¹, Valdek Mikli² and Malle Krunks¹

Address: ¹Laboratory of Thin Film Chemical Technologies, Department of Materials Science, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia and ²Chair of Semiconductor Materials Technology, Department of Materials Science, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia


Email: Erki Kärber* - erki.karber@ttu.ee

* Corresponding author


Additional experimental data

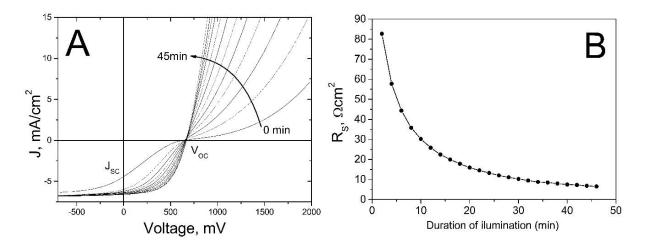

Figure S1: Top-view SEM images of Sb_2S_3 layers grown by ultrasonic-CSP using a) a solution with Sb/S source ratio of 1:3 and b) a solution with Sb/S source ratio of 1:2. Crystalline and amorphous parts are evident in image a. The single tetrahedral crystal in image b is composed of Sb and O according to EDX.

Figure S2: Top-view SEM image of Sb_2S_3 crystals grown by 7-cycles of spraying of solutions with Sb/S precursor ratio of 1:6 onto a TiO₂ substrate kept at 250 °C.

Figure S3: Optical transmittance of the glass/ITO/TiO₂/Sb₂S₃ stack at two different photon energies (1.9 eV and 2.5 eV) as a function of Sb₂S₃ growth cycles. The transmittance includes the specular and the diffuse component.

Figure S4: Current–voltage characteristics (A) and series resistance (B) of the glass/ITO/TiO₂/Sb₂S₃/P3HT/Au solar cells as a function of the duration of light-soaking using A.M1.5 illumination up to 45 min. The series resistance of the solar cell is calculated using the slope of the *I*–*V* curve rightwards from the location of the V_{OC} .