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 Additional Information on the Model 

In order to comply with EPSRC policy, the metadata associated to this publication can be found here: 

https://doi.org/10.17863/CAM.11214 

 

Part 1: Analytical solution to the Multilayer model 

For the Multilayer (ML) model, the following equations applies, where 𝜃𝑖 is defined as the fractional 

coverage of sites with 𝑛 monolayers: 

𝜕𝜃0

𝜕𝑡
=

𝑠𝐹

𝑁0
𝜃0 + 𝜎𝐽𝜃1 + ν0𝑒

−𝐸1
𝑘𝐵𝑇𝜃1                                                                              (1) 

𝜕𝜃𝑖

𝜕𝑡
=

𝑠𝐹

𝑁0
(𝜃𝑖−1 − 𝜃𝑖) + 𝜎𝐽((𝑖 + 1)𝜃𝑖+1 − 𝑛𝜃𝑖) − ν0𝑒

−𝐸𝑖
𝑘𝐵𝑇𝜃𝑖 + ν0𝑒

−𝐸𝑖+1
𝑘𝐵𝑇 𝜃𝑖+1   ;  𝑖 ≥ 1               (2) 

 with 𝐸𝑖 = 𝐸2 for 𝑖 ≥ 2. 

Both equations can be solved analytically, being convenient to define the following characteristic 

frequencies of the system before presenting the solutions: 

• ν𝐺𝐴𝑆 =
𝑠𝐹

𝑁0
, the frequency of precursor gas addition 

• ν𝑒 = 𝜎𝐽, the frequency of precursor gas dissociation 

• ν1 = ν0𝑒
−𝐸1
𝑘𝐵𝑇 , the frequency of precursor gas desorption from chemisorbed sites 

• ν2 = ν0𝑒
−𝐸2
𝑘𝐵𝑇, the frequency of precursor gas desorption from physisorbed sites 

To solve the system, we first find, from the steady state condition, the population ratios: 

𝜃1

𝜃0
=

ν𝐺𝐴𝑆

ν1+ν𝑒
                  (3)                  

𝜃𝑖

𝜃𝑖−1
=

ν𝐺𝐴𝑆

ν2+𝑖ν𝑒
 ;  𝑖 > 1           (4) 

From these ratios, the population 𝜃𝑖 is defined as: 

𝜃𝑖 = 𝜃0 ∏
𝜃𝑝

𝜃𝑝−1

𝑖
𝑝=1              (5) 

that for 𝑖 > 1 is  

𝜃𝑖>1 = 𝜃0
ν𝐺𝐴𝑆

ν1+ν𝑒
∏

ν𝐺𝐴𝑆

ν2+𝑝ν𝑒

𝑖
𝑝=2   

which was simplified using Wolfram Mathematica to  

𝜃𝑖 = 𝜃0
ν2+ν𝑒

ν1+ν𝑒
 

(
ν𝐺𝐴𝑆

ν𝑒
)

𝑖

(1+
ν2
ν𝑒

)
𝑖

;  𝑖 > 1         (6) 

( )𝑖  being the Pochhammer symbol. 

 A value for 𝜃0 can then be solved by applying the constrain 
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∑ 𝜃𝑖
∞
𝑖=0 = 1                 (7) 

which means that  

𝜃0 + 𝜃0
ν𝐺𝐴𝑆

ν1+ν𝑒
+ 𝜃0 ∑

ν2+ν𝑒

ν1+ν𝑒
 

(
ν𝐺𝐴𝑆

ν𝑒
)

𝑖

(1+
ν2
ν𝑒

)
𝑖

∞
𝑖=2 = 1        (8) 

which was solved using Wolfram Mathematica to  

𝜃0 =
ν1+ν𝑒

ν1+ν𝐺𝐴𝑆+ν𝑒(1+Ω)
            (9) 

with Ω = 𝑒
ν𝐺𝐴𝑆

ν𝑒 (
ν𝐺𝐴𝑆

ν𝑒
)

−ν2
ν𝑒 Υ (2 +

ν2

ν𝑒
,

ν𝐺𝐴𝑆

ν𝑒
), Υ being the lower incomplete gamma function. 

Combining (S6) with (9) and (S3) we readily obtain  

𝜃𝑖 =
ν2+ν𝑒

ν1+ν𝐺𝐴𝑆+ν𝑒(1+Ω)
 

(
ν𝐺𝐴𝑆

ν𝑒
)

𝑖

𝑃(
ν𝑒+ν2

ν𝑒
)

𝑖

 ;  𝑖 ≥ 1       (10) 

Part 2: Convergence to the Langmuir limit 

As expected, convergence of the ML model into the Langmuir model happens when ν2 → ∞ (infinitely 

fast desorption of physisorbed molecules).  

Using 

 lim
ν2→∞

Ω = 0            (11) 

 (
ν𝑒+ν2

ν𝑒
)

1
=

ν𝑒+ν2

ν𝑒
            (12)                    

lim
ν2→∞

(
ν𝑒+ν2

ν𝑒
)

𝑛>0
= ∞           (13)             

leads to: 

lim
ν2→∞

𝜃1 =
ν𝐺𝐴𝑆

ν1+ν𝐺𝐴𝑆+ν𝑒
= 𝜃𝐿            (14) 

lim
ν2→∞

𝜃0 =
ν1+ν𝑒

ν1+ν𝐺𝐴𝑆+ν𝑒
= 1 − 𝜃𝐿          (15) 

lim
ν2→∞

𝜃𝑛>1 = 0                (16) 
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Part 3: Notes on diffusion 

The framework developed in this work assumes no diffusion. Diffusion is however not negligible in 

many FEBID cases, in particular in the presence of strong electron-induced molecule depletion. 

The continuum model diffusive term has the form 𝐷∇2𝜃, where D[m2/s] is the diffusion coefficient, 

∇2 the Laplace operator and 𝜃 the surface concentration of precursor. The diffusion coefficient is given 

by 𝐷 = 𝐷0𝑒−𝐸𝑑𝑖𝑓𝑓/𝑘𝐵𝑇, with 𝐸𝑑𝑖𝑓𝑓 [J] the energy barrier to diffusion and 𝐷0 [m2/s] the diffusion 

constant in the limit of inexistent energy barriers [1].  The units of ∇2𝜃 are [m-2].  

Following the same discussion on characteristic frequencies as in the main manuscript, we can define 

a diffusion frequency 𝜈𝑑𝑖𝑓𝑓 = 𝐷∇2𝜃 [s-1], describing how often precursor molecules arrive to, or leave, 

a given site due to diffusion. This term will be, generally, space dependent. If 𝜈𝑑𝑖𝑓𝑓 is the smallest of 

the set {ν1, ν2, ν𝑒 , ν𝐺𝐴𝑆, 𝜈𝑑𝑖𝑓𝑓} by at least an order of magnitude then diffusion can be neglected.  

In most FEBID experiments, the main source of ∇2𝜃 is the profile of electron irradiation, which can 

cause a reduction of 𝜃 at the region of higher electron irradiation. We can therefore also assess the 

relevance of diffusion in a system by evaluating the level of depletion caused by the electron beam: 

𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑛 𝐼𝑛𝑑𝑢𝑐𝑒𝑑 𝐷𝑒𝑝𝑙𝑒𝑡𝑖𝑜𝑛 =  
Δ〈𝜃〉

〈𝜃〉(ν𝑒=0)
   (17) 

with Δ〈𝜃〉 =  〈𝜃〉(ν𝑒 = 0) −  〈𝜃〉(ν𝑒) being the difference between average coverage under no 

electron irradiation 〈𝜃〉(ν𝑒 = 0), and coverage under irradiation  〈𝜃〉(ν𝑒). The expression for the 

coverage is given by eqs. 11 and 12 in the main manuscript and represented in the FEBID frequency 

maps. The regimes in which no depletion will occur are directly readable from the constant precursor 

maps of Fig.3 in the main manuscript, included below for convenience.  

 

Fig. 3g, h, i of the main manuscript, included here to help in this discussion. 

The bottom of this maps (horizontal axis) corresponds to very low electron irradiation, with the color 

at this area as a good approximation to 〈𝜃〉(ν𝑒 = 0). In order to see if electron-induced depletion 

occurs in a regime, we just need to see if 〈𝜃〉 drops when moving vertically upwards in the map. In line 

with previous discussion in the literature [2], depletion only happens in the MTL regime. It is therefore 

only necessary to consider diffusion in this case. This does not imply, however, that diffusion will 

necessarily play a role in every MTL system, since even in the presence of electron-induced depletion, 

the diffusion coefficient D may still be very small. An illustrative numerical study of this case is given 

by [1], where the authors illustrate how, in a transition from the MTL to the DD regime as a function 

of temperature, the contribution of diffusion is first negligible, then becomes significant due to the 

activation of diffusion at 𝑘𝐵𝑇 ≈ 𝐸𝑑𝑖𝑓𝑓, and disappears at higher temperatures when desorption 

becomes dominant. For an extended analysis of systems in the MTL regime with diffusion, we refer 
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the readers to [3,4], where the authors describe the different deposit shapes resulting from diffusion 

and the effect of using different electron beam profiles amongst other important considerations.  

Part 4: FEBID frequency calculator 

The FEBID frequency calculator is a Microsoft Excel document, included as well as Supporting 

Information, which can be used to estimate the relevant frequencies from experimentally available 

parameters. The frequency ratios described in the main manuscript are calculated, which makes it 

possible to locate a given experiment within the FEBID maps shown in Fig. 3. of the main manuscript.  

On the left side of the calculator, the experimental data is entered, which results in an estimation of 

the corresponding frequencies.  At the top, an evaluation of the ratios between them. For further 

reference, a set of tables for typical FEBID cases is generated on the right. The six reference values 

used to generate each table (e.g. temperatures and enthalpies in the case of ν2) can be changed by 

the user. 

  

As a general rule, if an experimental result is to be analyzed using this method, every variable outlined 

in Table S1 should have been recorded. 

The calculation of ν1 and ν2 is based on the following equations: 

ν1 = ν0𝑒
−𝐸1
𝑘𝐵𝑇     (17) 

ν2 = ν0𝑒
−𝐸2
𝑘𝐵𝑇     (18) 

Parameter Unit 

Precursor used - 

Chamber Residual Pressure Pa 

Chamber Growth Pressure Pa 

Chamber Pump speed l/s 

Chamber Temperature K 

Substrate material - 

Substrate temperature K 

GIS diameter m 

GIS to substrate distance m 

GIS to substrate angle degrees 

Beam energy keV 

Beam current A 

Beam width m 
 

Table S1: Experimental checklist for every experiment which is to be analyzed using 

characteristic frequencies. 
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where ν0 is typically 1013 s-1 [ref. 2], and the values for E1 and E2 are either obtained directly from the 

literature or calculated from the condensation enthalpy as: 

𝐸 =
𝐻𝐶𝑜𝑛𝑑[kJ/mole]

𝑁𝐴

1000[kJ]

1[J]
    (19) 

where 𝑁𝐴 is Avogadro’s number. 

The calculation of ν𝐺𝐴𝑆 is more involved. First, the density of sites (N0) is estimated under the 

‘Precursor Properties’ section assuming square-packed molecules on the substrate. Then the molecule 

flux from the GIS is estimated assuming that most of the gas being pumped out during growth is 

coming from the GIS. Therefore, we assume that the volume adsorbed onto the substrate is negligible 

when compared to the volume of gas ejected by the GIS. Applying conservation of mass, the number 

of molecules exiting the GIS is every second (𝑀𝐺𝐼𝑆) is the same as the extra number of molecules being 

extracted by the pump, which is given by 

𝑆𝑃𝑈𝑀𝑃[𝑠−1] =
∆𝑃[Pa]

𝐾𝐵[
𝐽

K
]𝑇[K]

𝑄𝑃𝑈𝑀𝑃 [
litres

𝑠
]

1[m3]

1000[litres]
      (20) 

where 𝐾𝐵 is Boltzmann’s constant, 𝑄𝑃𝑈𝑀𝑃 is the volumetric flow rate of the pump at the molecular 

mass of the precursor and ∆𝑃 is the rise in pressure during growth. 

The flux exiting the GIS is 

𝐹𝐺𝐼𝑆[s−1m−2] =
𝑆𝑃𝑈𝑀𝑃[𝑠−1]

𝐴𝐺𝐼𝑆[m2]
         (21) 

where 𝐴𝐺𝐼𝑆 is the cross sectional area of the GIS. To estimate the flux at the substrate, a geometrical 

correction 𝑔 is applied [5], leading to  

𝐹 = 𝑔𝐹𝐺𝐼𝑆            (22) 

Under these assumptions, we can calculate the frequency for gas adsorption:  

ν𝐺𝐴𝑆 =
𝑠𝐹

𝑁0
           (23) 

where 𝑠 is the fraction of molecules which stick to the substrate upon arrival. 

To estimate the electron dissociation frequency, the density of electrons at the surface is first 

estimated using electron beam current, expected secondary electron yield 𝛾, and an effective beam 

diameter 𝐼 taken as the diameter of the electron-substrate interaction volume. 

The current density J at the substrate surface is then  

𝐽[s−1m−1] = 𝛾
𝐼[C/s]

𝜋(
𝑑[m]

2⁄ )
2

𝑒[C]

         (24) 

where 𝑒 is the electron charge.  

This allows calculating ν𝑒 as 

ν𝑒 = 𝜎𝐽           (25) 

with the dissociation cross section 𝜎 value, generally extracted from the literature. 
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