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S2 

1. Transfer Functions in Linear Viscoelasticity 

     Typically, linear viscoelasticity is treated through spring-dashpot models, which are able to 

reproduce the intricate physical relationships between stress and strain [1-3]. For a general 

treatment where a surface has multiple relaxation times, as is the case for many real materials, 

the Generalized Maxwell (also called Wiechert) Model may be used (see Figure 1 in the main 

manuscript). For this case, the transfer function relating the Laplace transformed strain (𝜀𝜀(̅𝑠𝑠)) 

and the Laplace transformed stress (𝜎𝜎�(𝑠𝑠) ), when strain is regarded as the input, is the 

relaxance 𝑄𝑄�(𝑠𝑠): 

 𝑄𝑄�(𝑠𝑠) =
𝜎𝜎�(𝑠𝑠)
𝜀𝜀(̅𝑠𝑠)

 (S1) 

     The relaxance for spring-dashpot models can be obtained directly in the transform plane 

using techniques analogous to those used for determining mesh equations in electric circuit 

theory [1,4]. Briefly, relaxances are added in parallel and retardances (inverses of relaxances) 

are added in series. The relaxances of the springs and dashpots (in the mechanical model 

diagram of Figure 1) are 𝐺𝐺𝑛𝑛 and 𝜂𝜂𝑛𝑛𝑠𝑠, respectively (𝐺𝐺𝑛𝑛 is the modulus of the nth spring, and 𝜂𝜂𝑛𝑛 

is the viscosity of the nth dashpot). The retardances of elements in series (in a Maxwell arm) 

may be added to get the retardance of the nth arm: 1
𝐺𝐺𝑛𝑛

+ 1
𝜂𝜂𝑛𝑛𝑠𝑠

, and its inverse will be the 

relaxance of the nth arm: 𝐺𝐺𝑛𝑛𝜂𝜂𝑛𝑛𝑠𝑠
𝐺𝐺𝑛𝑛+𝜂𝜂𝑛𝑛𝑠𝑠

. Summation over all the arms (in parallel) and making the 

substitution: 𝜏𝜏𝑛𝑛 = 𝜂𝜂𝑛𝑛/𝐺𝐺𝑛𝑛 (relaxation time of the nth arm), leads to the total relaxance of the 

model: 

 𝑄𝑄�(𝑠𝑠) = {𝐺𝐺𝑒𝑒} + �
𝐺𝐺𝑛𝑛𝜏𝜏𝑛𝑛𝑠𝑠

1 + 𝜏𝜏𝑛𝑛𝑠𝑠𝑛𝑛

 (S2) 

which can also be expressed as: 

 𝑄𝑄�(𝑠𝑠) = 𝐺𝐺𝑔𝑔 −�
𝐺𝐺𝑛𝑛

1 + 𝜏𝜏𝑛𝑛𝑠𝑠𝑛𝑛

 (S3) 
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where 𝐺𝐺𝑔𝑔 = {𝐺𝐺𝑒𝑒} + ∑ 𝐺𝐺𝑛𝑛𝑛𝑛 , is the glassy modulus, also called instantaneous modulus, which 

describes the response of the material at short loading times. 𝐺𝐺𝑒𝑒 is the equilibrium modulus 

[5], also called rubbery modulus, which describes the material behavior at long time-scales. 

𝐺𝐺𝑒𝑒 appears in curly brackets because it may or may not exist.  It is non-zero if the material is 

arrheodictic, meaning that it cannot sustain steady-state flow, or it may be zero if the material 

displays steady-state flow [1].  

     The relaxance 𝑄𝑄�(𝑠𝑠) may be related to the so-called relaxation modulus G(t), which is the 

material’s stress response to a unit step strain H(t) (the unit step function). The transform of 

the strain input, 𝜀𝜀(𝑡𝑡) = 𝐻𝐻(𝑡𝑡), is 𝜀𝜀(̅𝑠𝑠) = 1/𝑠𝑠. Inserting this input into Equation (S1) yields: 

 𝜎𝜎�(𝑠𝑠) =
𝑄𝑄�(𝑠𝑠)
𝑠𝑠

= 𝐺̅𝐺(𝑠𝑠)             (S4) 

Applying the above to Equation (S2) leads to the (transformed) relaxation modulus of the 

model in Figure 1, which after retransformation gives: 

 𝐺𝐺(𝑡𝑡) = {𝐺𝐺𝑒𝑒} + �𝐺𝐺𝑛𝑛𝑒𝑒
−𝑡𝑡
𝜏𝜏𝑛𝑛

𝑛𝑛

             (S5) 

More specifically, the above expression corresponds to the shear relaxation modulus, which 

describes the response of the shear stress 𝜎𝜎𝑥𝑥𝑥𝑥(𝑡𝑡) to a unit step engineering shear strain 𝜀𝜀𝑥𝑥𝑥𝑥(𝑡𝑡). 

This notation with the subscripts ‘xy’ highlights the tensorial nature of stress and strain, which 

was disregarded earlier for simplicity (the linear viscoelastic treatment can be extended to the 

three-dimensional case when needed). 

     In an analogous way, when the stress is regarded as the input, the transfer function (𝑈𝑈�(𝑠𝑠)) 

relating the transformed stress to the transformed strain response is: 

 𝑈𝑈�(𝑠𝑠) =
𝜀𝜀(̅𝑠𝑠)
𝜎𝜎�(𝑠𝑠)

 (S6) 

Where 𝑈𝑈�(𝑠𝑠) is also called the retardance, and is the reciprocal of the relaxance (𝑈𝑈�(𝑠𝑠) =

1/𝑄𝑄�(𝑠𝑠)).  
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     The retardance can also be related to the more extensively used compliance function. The 

compliance, 𝐽𝐽(𝑡𝑡), also called creep compliance or strain retardation, is the strain response in 

time (𝜀𝜀(𝑡𝑡)) to a unit step stress (𝜎𝜎(𝑡𝑡) = 𝐻𝐻(𝑡𝑡)). The transformed input stress is 𝜎𝜎�(𝑠𝑠) = 1/𝑠𝑠, 

which upon insertion into Equation (S6) yields the transformed compliance (𝐽𝐽(̅𝑠𝑠)): 

 𝜀𝜀(̅𝑠𝑠) =
𝑈𝑈�(𝑠𝑠)
𝑠𝑠

=  𝐽𝐽(̅𝑠𝑠) (S7) 

 

2. Harmonic Excitation of Viscoelastic Materials: Derivation of Equation (4) in the Main 

Manuscript 

    As stated in the main manuscript, the input for experimental cases where the tip is always 

in contact with the sample may be regarded as: 

 𝐹𝐹(𝑡𝑡) = 𝐹𝐹𝑠𝑠𝐻𝐻(𝑡𝑡) + 𝐹𝐹0𝐼𝐼𝐼𝐼�𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗� (S8) 

where 𝑗𝑗 = √−1, and Im[ ] indicates that only the imaginary component of the term in brackets 

is taken into account. Equation (S8) is the same as Equation (3) in the main manuscript, but 

for mathematical convenience in the derivations, we have used 𝐼𝐼𝐼𝐼�𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗�  instead of its 

equivalent, sin(𝜔𝜔𝜔𝜔). Therefore, after retransformation of the response to the time domain, 

only the imaginary portion will be meaningful. 

 The transformed force input (𝐹𝐹�(𝑠𝑠)) is: 

 𝐹𝐹�(𝑠𝑠) =
𝐹𝐹𝑠𝑠
𝑠𝑠

+  𝐹𝐹0 �
1

𝑠𝑠 − 𝑗𝑗𝑗𝑗
� (S9) 

where 𝐹𝐹𝑠𝑠 is the static force setpoint, 𝐹𝐹0 is the amplitude of the harmonic excitation (tip-sample 

force), and 𝜔𝜔 is the driving and response frequency.  

    Cheng et.al. [6] have applied the viscoelastic correspondence principle to extend 

Sneddon’s elastic solution [7] of a flat-end indenter penetrating an elastic half-space to its 

viscoelastic counterpart. They have shown that for the case of a time-independent Poisson’s 

ratio (𝜈𝜈), the relation between the transformed force (𝐹𝐹�(𝑠𝑠)) and displacement (ℎ�(𝑠𝑠)) can be 
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written as 𝐹𝐹�(𝑠𝑠) = 4𝑅𝑅
1−𝜈𝜈

𝑄𝑄�(𝑠𝑠)ℎ�(𝑠𝑠), which may also be conveniently expressed in terms of the 

material’s retardance 𝑈𝑈�(𝑠𝑠): 

 ℎ�(𝑠𝑠) =
1
𝑏𝑏
𝑈𝑈�(𝑠𝑠)𝐹𝐹�(𝑠𝑠) (S10) 

where the substitution 𝑏𝑏 = 4𝑅𝑅
1−𝜈𝜈

, has been used.  The constant b will be regarded as a cell 

constant (or apparatus constant) [1]. The excitation expression in Equation (S9) can be 

divided into two parts. Each part can be handled independently and both parts can be added 

up at the end, thanks to system’s time linearity. Focusing on the first part, 𝐹𝐹�1(𝑠𝑠) = 𝐹𝐹𝑠𝑠
𝑠𝑠

, and 

inserting it into Equation (S10) with the aid of Equation (S7) leads to the displacement 

response: ℎ�1(𝑠𝑠) = 𝐹𝐹𝑠𝑠
𝑏𝑏
𝐽𝐽(̅𝑠𝑠), which after retransformation gives: 

 ℎ1(𝑡𝑡) =
𝐹𝐹𝑠𝑠
𝑏𝑏
𝐽𝐽(𝑡𝑡) (S11) 

     Thus, the static force setpoint is associated with a displacement response that is 

proportional to the material’s creep compliance (𝐽𝐽(𝑡𝑡)). 

     Now, we turn our attention to the second portion of the force excitation in Equation (S9), 

𝐹𝐹�2(𝑠𝑠) =  𝐹𝐹0 �
1

𝑠𝑠−𝑗𝑗𝑗𝑗
�, and insert it into Equation (S10) to obtain:  

 ℎ�2(𝑠𝑠) =  
𝐹𝐹0
𝑏𝑏

𝑈𝑈�(𝑠𝑠)
𝑠𝑠 − 𝑗𝑗𝑗𝑗

 (S12) 

Being the retardance a ratio of polynomials in the complex variable ‘s’, it can be expressed as: 

𝑈𝑈�(𝑠𝑠) = 𝑢𝑢�(𝑠𝑠)/𝑞𝑞�(𝑠𝑠). Substituting the above into Equation (S12) and rearranging leads to: 

 
𝑏𝑏
𝐹𝐹0
ℎ�2(𝑠𝑠) =

𝑢𝑢�(𝑠𝑠)/𝑞𝑞�(𝑠𝑠)
𝑠𝑠 − 𝑗𝑗𝑗𝑗

 (S13) 

The term in brackets of the right hand side of the above equation can be decomposed using 

partial fractions: 

 
𝛽𝛽

𝑠𝑠 − 𝑗𝑗𝑗𝑗
+
𝛾̅𝛾(𝑠𝑠)
𝑞𝑞�(𝑠𝑠)

=
𝛽𝛽𝑞𝑞�(𝑠𝑠) + 𝛾̅𝛾(𝑠𝑠)(𝑠𝑠 − 𝑗𝑗𝑗𝑗)

(𝑠𝑠 − 𝑗𝑗𝑗𝑗)𝑞𝑞�(𝑠𝑠)
 (S14) 
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where 𝛽𝛽 is the portion of the response associated with the pole of the driving transform, and 

𝛾̅𝛾(𝑠𝑠) is the portion of the response associated with the poles of the material’s relaxance. From 

Equation (S14) we note that: 

 𝛽𝛽𝑞𝑞�(𝑠𝑠) + 𝛾̅𝛾(𝑠𝑠)(𝑠𝑠 − 𝑗𝑗𝑗𝑗) = 𝑢𝑢�(𝑠𝑠) (S15) 

In the steady state, when 𝑠𝑠 =  𝑗𝑗𝑗𝑗, from Equation (S15) we obtain the value of 𝛽𝛽: 

 𝛽𝛽 = 𝑈𝑈(𝑠𝑠)�
𝑠𝑠=𝑗𝑗𝑗𝑗

= 𝐽𝐽∗(𝜔𝜔) (S16) 

The above shows that the retardance in the steady state (when 𝑠𝑠 = 𝑗𝑗𝑗𝑗; the pole of the driving 

function) becomes what is commonly known as the complex compliance, which describes the 

displacement response of the material in the steady state when a harmonic force excitation is 

applied.     

     Substituting Equation (S16) into Equation (S12), leads to the portion associated with the 

steady state: ℎ�2
𝑠𝑠𝑠𝑠(𝑠𝑠) = 𝐹𝐹0

𝑏𝑏
𝐽𝐽∗(𝜔𝜔)
𝑠𝑠−𝑗𝑗𝑗𝑗

, which after retransformation becomes: 

 ℎ2
𝑠𝑠𝑠𝑠(𝑡𝑡) =

𝐹𝐹0
𝑏𝑏

Im�𝐽𝐽∗(𝜔𝜔)𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗� (S17) 

where, as mentioned earlier, we only keep the imaginary component, since we used 𝐼𝐼𝐼𝐼�𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗� 

instead of sin(𝜔𝜔𝜔𝜔) when we defined the input in Equation (S8). 

As with any complex quantity, the complex compliance can be expressed in polar 

coordinates: 

 𝐽𝐽∗(𝜔𝜔) = 𝐽𝐽(𝜔𝜔)𝑒𝑒−𝑗𝑗𝑗𝑗(𝜔𝜔) (S18) 

where 𝐽𝐽(𝜔𝜔) is the absolute compliance, and 𝜃𝜃(𝜔𝜔) –the loss angle– is the phase lag (or lead) of 

the response of a viscoelastic material to a harmonic excitation in the steady state. By 

convention, it is defined that force always leads the displacement, no matter which one is 

regarded as excitation or response. This explains the negative sign in the exponential in 

Equation (S18), which emphasizes that the displacement is lagging behind the force by 𝜃𝜃(𝜔𝜔) . 

The value of 𝜃𝜃(𝜔𝜔) spans from zero, when a material is completely elastic, to 90 °, when the 
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material is completely viscous. Furthermore, it is possible to decompose the complex 

compliance into its real and imaginary parts in rectangular coordinates: 

 𝐽𝐽∗(𝜔𝜔) = 𝐽𝐽′(𝜔𝜔) − 𝑗𝑗𝑗𝑗′′(𝜔𝜔) (S19) 

where 𝐽𝐽′(𝜔𝜔) refers to the storage compliance, and 𝐽𝐽′′(𝜔𝜔) to the loss compliance. Inserting 

Equation (S19) into Equation (S17) yields: 

 ℎ2
𝑠𝑠𝑠𝑠(𝑡𝑡) =

𝐹𝐹0
𝑏𝑏

[𝐽𝐽′ (𝜔𝜔)sin𝜔𝜔𝜔𝜔 − 𝐽𝐽′′(𝜔𝜔) cos𝜔𝜔𝜔𝜔] (S20) 

Recalling that the harmonic force excitation is: 𝐹𝐹2(𝑡𝑡) = 𝐹𝐹0 sin𝜔𝜔𝜔𝜔, Equation (S20) shows that 

the steady state response contains one portion (proportional to  𝐽𝐽′(𝜔𝜔)) that is in-phase with the 

excitation and is therefore regarded as the elastic component. The other portion (proportional 

to 𝐽𝐽′′(𝜔𝜔)) is the viscous component. Combining Equation (S20) with Equation (S11) to get the 

total response for the total excitation force (Equation (S8)), we obtain: 

 ℎ(𝑡𝑡) =  
𝐹𝐹𝑠𝑠
𝑏𝑏
𝐽𝐽(𝑡𝑡) +  

𝐹𝐹0
𝑏𝑏

[𝐽𝐽′(𝜔𝜔) sin(𝜔𝜔𝜔𝜔) − 𝐽𝐽′′(𝜔𝜔) cos(𝜔𝜔𝜔𝜔)] (S21) 

which is the same as Equation (4) in the main manuscript. 

   In a completely analogous way, we may derive the complex modulus (𝐺𝐺∗(𝜔𝜔)), which 

describes the stress (or force) response to a harmonic strain (or displacement) excitation. 

Briefly, for a harmonic strain excitation (𝜀𝜀0𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗 ), the steady-state stress response of a 

viscoelastic material is given by 𝜎𝜎(𝜔𝜔) = 𝐺𝐺∗(𝜔𝜔)𝜀𝜀(𝜔𝜔). 𝐺𝐺∗(𝜔𝜔) is the portion of the response 

associated with the pole of the driving transform (𝜀𝜀0/(𝑠𝑠 − 𝑗𝑗𝑗𝑗)), i.e., the steady state, and 

therefore: 

 𝐺𝐺∗(𝜔𝜔) = 𝑄𝑄(𝑠𝑠)�
𝑠𝑠=𝑗𝑗𝑗𝑗

 (S22) 

𝐺𝐺∗(𝜔𝜔) can also be expressed in polar coordinates: 

 𝐺𝐺∗(𝜔𝜔) = 𝐺𝐺�(𝜔𝜔)𝑒𝑒𝑗𝑗𝑗𝑗(𝜔𝜔) (S23) 
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where 𝐺𝐺�(𝜔𝜔) is the absolute modulus, and 𝜃𝜃(𝜔𝜔) is again the loss angle (previously defined). 

Here, the positive sign in the exponential obeys the convention that the force leads the 

displacement. Also, 𝐺𝐺∗(𝜔𝜔) may be expressed in Cartesian coordinates: 

 𝐺𝐺∗(𝜔𝜔) = 𝐺𝐺′(𝜔𝜔) + 𝑗𝑗𝑗𝑗′′(𝜔𝜔) (S24) 

By relating Cartesian and polar coordinates, and with the aid of Euler’s identity, it is easily 

ascertained that: 

 𝐺𝐺�(𝜔𝜔) = ��𝐺𝐺′(𝜔𝜔)�
2

+ �𝐺𝐺′′(𝜔𝜔)�
2
 (S25) 

It may also be confirmed that: 

 𝐺𝐺′(𝜔𝜔) = 𝐺𝐺�(𝜔𝜔) cos 𝜃𝜃(𝜔𝜔)               𝐺𝐺′′(𝜔𝜔) = 𝐺𝐺�(𝜔𝜔) sin𝜃𝜃(𝜔𝜔)                  (S26) 

Thus, 

 tan𝜃𝜃(𝜔𝜔) =
𝐺𝐺′′(𝜔𝜔)
𝐺𝐺′(𝜔𝜔) =

𝐽𝐽′′(𝜔𝜔)
𝐽𝐽′(𝜔𝜔)

 (S27) 

where the value of 𝜃𝜃(𝜔𝜔)  remains always positive due to the chosen convention of 

displacement always lagging behind the force. 

    Equations (S22) and (S3) can be combined to obtain the complex modulus of the 

Generalized Maxwell Model shown in Figure 1 of the main manuscript. Afterwards, 

decomposition into real and imaginary components leads to: 

 𝐺𝐺′(𝜔𝜔) = 𝐺𝐺𝑔𝑔 −�
𝐺𝐺𝑛𝑛

1 + 𝜔𝜔2𝜏𝜏𝑛𝑛2𝑛𝑛

 (S28) 

for the storage modulus, and  

 𝐺𝐺′′(𝜔𝜔) = �
𝐺𝐺𝑛𝑛𝜔𝜔𝜏𝜏𝑛𝑛

1 + 𝜔𝜔2𝜏𝜏𝑛𝑛2𝑛𝑛

 (S29) 

for the loss modulus. 
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3. Viscoelastic Data Used in the Simulations 

    For the simulations described in Figures 3 to 5 of the main manuscript, the viscoelastic 

sample was represented with a Generalized Maxwell Model (see Figure 1 in the main 

manuscript) with 26 Maxwell arms. The corresponding parameters were digitalized from the 

data provided by Brinson and Brinson (page 249, Fig. 7.19 in reference [2]), who obtained the 

values by fitting the experimental data of Catsiff and Tobolsky [8]. The digitalized values are 

summarized in table S1. 

 

Table S1 

 

Generalized Maxwell Parameters for Poly-isobutylene given by Brinson and 

Brinson [2]. 

Element 
number Relaxation time 𝜏𝜏 (s) Modulus (Pa) 

1 1.166E-09 4.132E+08 
2 4.852E-09 8.227E+08 
3 2.250E-08 6.315E+08 
4 9.652E-08 3.607E+08 
5 3.832E-07 1.533E+08 
6 1.671E-06 4.522E+07 
7 7.196E-06 2.230E+07 
8 2.888E-05 6.101E+06 
9 1.479E-04 2.606E+06 
10 5.871E-04 1.108E+06 
11 2.361E-03 2.816E+05 
12 9.355E-03 1.288E+05 
13 4.028E-02 6.354E+04 
14 1.798E-01 7.212E+03 
15 8.160E-01 1.336E+04 
16 3.293E+00 9.276E+04 
17 1.303E+01 4.567E+04 
18 5.847E+01 1.315E+05 
19 2.967E+02 8.110E+04 
20 1.046E+03 1.390E+05 
21 5.278E+03 1.068E+05 
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22 2.635E+04 1.276E+05 
23 8.797E+04 6.263E+04 
24 4.124E+05 3.094E+04 
25 1.831E+06 1.384E-01 
26 7.757E+06 1.322E-01 

 

 

 

References 

[1] N. W. Tschoegl, The Phenomenological Theory of Linear Viscoelastic Behavior: an 

Introduction (Springer Science & Business Media, 2012). 

[2] H. F. Brinson; L. C. Brinson, Polymer Engineering Science and Viscoelasticity 

(Springer, 2008). 

[3] López-Guerra, E.A.; Solares, S.D. Beilstein Journal of Nanotechnology 2014, 5, 2149. 

[4] Gardner, M.F.; Barnes, J.L. Transients in Linear Systems Studied by the Laplace 

Transformation (J. Wiley & Sons, inc., 1956). 

[5] Ferry, J.D. Viscoelastic Properties of Polymers (John Wiley & Sons, 1980). 

[6] Cheng, L.; Xia, X.; Yu, W.; Scriven, L.; Gerberich, W. Journal of Polymer Science 

Part B: Polymer Physics 2000, 38, 10. 

[7] Sneddon, I.N. International Journal of Engineering Science 1965, 3, 47. 

[8] Catsiff, E.; Tobolsky, A. Journal of Colloid Science 1955, 10, 375. 

 


