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Analytical expression for normal sample stiffness



The following computation steps establish the analytical expression for normal sample stiffness

[1]. The formula is derived from the equations stated by Hurley and Turner [2] for the numerical

determination of normal sample stiffness. These equations, i.e., equations (1), (2), (3), (4), (5), (6)

and (7), are based on the description of the dynamics of a clamped, ideally beam-shaped cantilever

elastically coupled to a sample by its tip, published by Rabe [3] and Rabe and co-workers [4].

The model takes into account characteristics of the cantilever, such as tilt angle α and dimensions,

namely total length L, length from the clamped end to the tip L1, length from the tip to the free end

L2, tip height h, but also characteristics of the sample, i.e., normal sample stiffness ksample,norm and

lateral sample stiffness ksample,lat represented by two springs coupled to the cantilever tip, as shown

in Figure S1.

Figure S1: Modelization of clamped beam-shaped cantilever elastically coupled to a sample by
its tip and used for the computation of normal sample stiffness. The cantilever characteristics, i.e.
L, L1, L2, h and α correspond, respectively, to cantilever length, length from the clamped end to
the tip, length from the tip to the free end, tip height and tilt angle. The springs ksample,norm and
ksample,lat stand, respectively, for normal and lateral sample stiffnesses.

Wavenumbers xn and yn associated with the measured nth flexural contact resonance fn and torsional

contact resonances tn are computed by

xnL = x0
nL

√
fn

f 0
n
,
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where f 0
n is the cantilever resonance of nth flexural mode in free space and x0

n the associated wa-

velength (values given in Rabe [3]) obtained from the resolution of the characteristic equation

cos(xnL)cosh(xnL)+1 = 0 and

yn =
(2n−1)π

2
tn
t0
n
,

where t0
n is the cantilever resonance of nth torsional mode in free space.

The normalized lateral contact stiffness is determined by

ksample,lat =−
ynLcos(ynL)

sin(ynL1)cos(ynL2)
klat ,

where klat is the lateral cantilever stiffness constant.

The normal contact stiffness normalized with the cantilever flexural stiffness constant k1 is obtained

from the expression

ksample,norm

k1
=
−B±

√
B2−4AC

6A
, (1)

where the positive root corresponds to the normalized contact stiffness and parameters A, B and C

are defined by

A =
ksample,lat

ksample,norm
A
′
, (2)

where

A
′
=

(
h

L1

)2(
1− cos(xnL1)cosh(xnL1)

)(
1+ cos(xnL2)cosh(xnL2)

)
,
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B = B1 +B2 +B3, (3)

with

B1 =

[
sin2(α)+

(
ksample,lat

ksample,norm

)
cos2(α)

]
B
′
1, (4)

where

B
′
1 =

(
h
L1

)2

(xnL1)
3
[(

1+ cos(xnL2)cosh(xnL2)

)(
sin(xnL1)cosh(xnL1)+ cos(xnL1)sinh(xnL1)

)
−
(

1− cos(xnL1)cosh(xnL1)

)(
sin(xnL2)cosh(xnL2)+ cos(xnL2)sinh(xnL2)

)]
,

B2 =

[(
ksample,lat

ksample,norm
−1
)

cos(α)sin(α)

]
B
′
2, (5)

where

B
′
2 = 2

(
h
L1

)
(xnL1)

2
[(

1+ cos(xnL2)cosh(xnL2)
)

sin(xnL1)sinh(xnL1)

+
(

1− cos(xnL1)cosh(xnL1)
)

sin(xnL2)sinh(xnL2)

]
,

Factor 2, that does not appear in Hurley and Turner [2], is actually a necessary correction, as intro-

duced by Steiner et al. [5],
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B3 =

[
cos2(α)+

(
ksample,lat

ksample,norm

)
sin2(α)

]
B
′
3, (6)

where

B
′
3 = xnL1

[(
1+ cos(xnL2)cosh(xnL2)

)(
sin(xnL1)cosh(xnL1)− cos(xnL1)sinh(xnL1)

)
−
(

1− cos(xnL1)cosh(xnL1)
)(

sin(xnL2)cosh(xnL2)− cos(xnL2)sinh(xnL2)
)]

,

and

C = 2(xnL1)
4(1+ cos(xnL)cosh(xnL)). (7)

Parameter B can be split into two terms, one with ksample,norm and the other without;

B = β1 +β2
ksample,lat

ksample,norm
,

with

β1 = sin2(α)B
′
1− cos(α)sin(α)B

′
2 + cos2(α)B

′
3,

and

β2 = cos2(α)B
′
1 + cos(α)sin(α)B

′
2 + sin2(α)B

′
3.

S4



By setting a new variable ε of expression

ε = 6A
′ ksample,lat

k1
,

we can rewrite equation (1) as

ε +B =±
√

B2−4AC.

Finally, by squaring each side of the equation and isolating ksample,norm, we find the following ex-

pression for the normal sample stiffness

ksample,norm =−2A
′
Cε−1 +β2

0.5ε +β1
ksample,lat .
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