
Supporting Information

for

Inverse proximity effect in semiconductor Majorana nanowires

Alexander A. Kopasov∗1, Ivan M. Khaymovich1, 2 and Alexander S. Mel’nikov1, 3

Address: 1Institute for Physics of Microstructures, Russian Academy of Sciences, 603950 Nizhny

Novgorod, GSP-105, Russia; 2Max Planck Institute for the Physics of Complex Systems, 01187

Dresden, Germany and 3Lobachevsky State University of Nizhny Novgorod, 23 Gagarina, 603950

Nizhny Novgorod, Russia

Email: Alexander A. Kopasov - kopasov@ipmras.ru

∗ Corresponding author



Derivation of the model equations

Here we present the derivation of the model Equations 6–7. The Hamiltonian of the system (Equa-

tion 1) given in the main text consists of three terms (Equations 2–4) describing the superconducting

shell, the semiconducting nanowire, and the tunneling terms between these subsystems, respectively.

The notations are also given in the main text.

The field operators in the shell are normalized in the following way:

[
ψσ (r),ψ†

σ ′(r
′)
]
+
=

1
dsRw

δσσ ′δ (ϕ−ϕ
′)δ (y− y′). (S1)

Here [A,B]+ = AB+BA denotes the anticommutator of two operators A and B. The operators in the

nanowire satisfy the following anticommutation relations:

[
aσ (y),a

†
σ ′(y

′)
]
+
=

1
Sw

δσσ δ (y− y′) . (S2)

Now we proceed with the definitions of the Matsubara Green’s functions in the shell. We adopt the

following spinor notation in the Nambu space:

Ψ(x) =

ψ↑(x)

ψ↓(x)

 and Ψ̃(x) =
(
ψ↑(x) ψ↓(x)

)
. (S3)

Here x = (r,τ), while τ is the imaginary time variable in the standard Matsubara technique. Using

the above notations, we introduce the Green’s functions as follows:

Ǧs =

〈
Tτ


−Ψ(x1)

Ψ̃†(x1)

⊗(Ψ
†(x2) − Ψ̃(x2)

)〉=

Ĝs(x1,x2) F̂s(x1,x2)

F̂†
s (x1,x2)

ˆ̄Gs(x1,x2)

 , (S4)

where 〈...〉 denotes the Gibbs statistical average and Tτ is the time-ordering operator. The definition

of the Green’s functions of the wire is given by Equation S3 and Equation S4 with the replacement
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of the field operators ψα(x)→ aα(y) along with the replacement of the subscripts s→ w, where

y = (y,τ).

Using the Nambu spinor notation presented in the above equation, we introduce the mixed Green’s

functions in the spin-Nambu space:

Ǧt =

〈
Tτ


−Ψ(x1)

Ψ̃†(x1)

⊗(a†(y2) − ã(y2)
)〉=

Ĝt(x1,y2) F̂t(x1,y2)

F̂†
t (x1,y2) Ĝt(x1,y2)

 . (S5)

We start the derivation of Gor’kov equations (Equation 10) by writing the equations for the mixed

Matsubara Green’s functions (Equation S5) in the frequency–coordinate representation:

[Ǧ(0)
s (r1)]

−1Ǧt(r1,y2)− (1/ζ )Ť (r1)Ǧw(y1,y2) = 0 , (S6)

Ǧt(r1,y2)[Ǧ
(0)
w (y2)]

−1−ζ

〈
Ǧs(r1,r2)Ť (r2)

〉
ϕ2

= 0 , (S7)

where

[Ǧ(0)
s (r)]−1 = iωn− εs(r)τ̌z + ∆̌ , (S8)

[Ǧ(0)
w (y)]−1 = iωn− εw(y)+ iα∂yσ̂x−hσ̂y , (S9)

ζ =
√

ds/πRw, Ť (r)= [T (r)Π̌z+−T †(r)Π̌z−], T (r) is the tunneling amplitude, Π̌z± =(1± τ̌z)/2,

and 〈...〉ϕ =
∫

dϕ . The solution of Equation S6 with the boundary conditions corresponding to the

isolated superconductor takes the form

Ǧt(r1,y2) =
√

dsRwSw〈Ǧ(0)
s (r1,r)Ť (r)Ǧw(y,y2)〉r , (S10)

where 〈...〉r =
∫

dy dϕ . The Green’s function of the isolated superconductor satisfies the following

equation:

[Ǧ(0)
s (r1)]

−1Ǧ(0)
s (r1,r2) = 1̌(dsRw)

−1
δ (ϕ1−ϕ2)δ (y1− y2) . (S11)
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Substituting Equation S10 into the equation for the Green’s function in the wire

Ǧ−1
w (y1)Ǧw(y1,y2)−ζ 〈Ť †(r1)Ǧt(r1,y2)〉ϕ1 = 1̌S−1

w δ (y1− y2) (S12)

and performing the ensemble averaging over the random tunneling amplitudes

T (r)T (r′) = t2`cδ (y− y′)δ (ϕ−ϕ
′) , (S13)

we get Dyson-Gor’kov equations for the Green’s functions of the wire

[
Ǧ−1

w (y1)− Σ̌w(y1)
]

Ǧw(y1,y2) = 1̌S−1
w δ (y1− y2) , (S14)

with the self-energy part taken in the limit of an isolated superconducting shell

Σ̌w(y) = dsRwt2`cτ̌z〈Ǧ(0)
s (r,r)〉ϕ τ̌z . (S15)

The Dyson-Gor’kov equations in the superconducting shell are derived using the same arguments as

for the previous case

[
Ǧ−1

s (r1)− Σ̌s(r1)
]

Ǧ(0)
s (r1,r2) = 1̌(dsRw)

−1
δ (ϕ1−ϕ2)δ (y1− y2) , (S16)

with the self-energy part taken in the limit of an isolated semiconducting wire

Σ̌s(r) = Swt2`cτ̌zǦ
(0)
w (y,y)τ̌z , (S17)

the solution of Equation S7, and with the Green’s function of the isolated wire satisfying the follow-

ing equation

Ǧ−1
w (y1)Ǧ

(0)
w (y1,y2) = 1̌S−1

w δ (y1− y2) . (S18)
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To take exact boundary conditions into account we follow the procedure suggested in [1] replacing

Ǧ(0)
s (r1,r2) and Ǧ(0)

w (y1,y2) in Equation S15 and Equation S17 with the exact ones

Σ̌w(y) = dsRwt2`cτ̌z〈Ǧs(r,r)〉ϕ τ̌z , (S19)

Σ̌s(r) = Swt2`cτ̌zǦw(y,y)τ̌z . (S20)

Finally the Fourier transform of Equation S14 and Equation S16 with the self-energies (Equation

S19 and Equation S20) along with the renormalization of the Green’s functions Ǧw→ Ǧw/Sw and

Ǧs→ Ǧs/ds completes the derivation of Equations 6–7 in the main text.
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