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1 Complementary SEM and AFM measurements

250 nm

Figure S1: SEM micrograph of the 60 nm InAs nanowire, contacted with Au electrodes (bright)
on a Si/SiO2 substrate (dark).
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Figure S2: KFM scan of the nanowire. Topography (a), capacitance gradient C′′ (b), and surface
potential (c) of the scan shown in fig. 2(b). Note that the increased capacitance gradient at the edge
of the left electrode is due to an increased interaction with the AFM tip (inset).
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Figure S3: Difference of biased and grounded surface potential next to the nanowire. (a) KFM
image at zero bias subtracted from a scan biased at 37.7 µA. (b) Column average of (a), excluding
the area containing the nanowire (shaded red). Dashed lines indicate outer edges of the electrodes.
In the oxide-covered areas, the influence of the bias applied to the right electrode can only be seen
in a narrow region closest to the electrode edge. This could be due to a remaining stray capacitive
coupling of the AFM tip to the 120-nm high electrode, or it could be an effect of populating trap
states in the oxide.
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Figure S4: KFM raw data during sweeps of the source–drain current. (a) Measured raw surface
potential profiles. (b) Bias-independent offset extracted from (a) using the reconstruction algo-
rithm.

2 Reconstruction of wire resistivity and contact resistances

The algorithm determines a viable arrangement of (non-linear) resistors such that the resulting

voltage profiles under current bias match the line profiles measured by KFM. This arrangement

contains information about the wire resistivity and contact resistances.

The resistors form a chain as follows, where o indicates a node at fixed potential U , and Ri and

Rν
c are the chain and contact resistances, respectively:

o(U l
el) — Rl

c — o — R1 — o — R2 — o — . . . — o — Rn — o — Rr
c — o(U r

el)

We may assume that one electrode is held at ground potential, Uel,l = 0. As a function of position,

the potentials are

U(x < xl
el) = 0 (1)

U(xl
el) = Rl

c(I)I (2)

U(xl
el ≤ x≤ xr

el) =U(xl
el)+

x∫
xl

el

dxρ
′(x, I)I (3)

U(xr
el ≤ x) =U(xr

el)+Rr
c(I)I (4)

where ρ ′(x) = ρ/A is the distributed wire resistance, or wire resistivity.
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The full profile is given by the contact resistance and the wire resitivities. For the calculation,

the integral is discretized using the trapezoidal rule and ρ(xi, I) = Ri(I)/∆x.

Rl,r
c and ρ ′ are assumed to follow a power series of the current I, i.e.

ρ
′(x, I) = α(x)+β (x)I + γ(x)I2 + · · ·+ν(x)In

for terms up to n-th order.

The reconstruction algorithm minimizes the functional

1
2 ∑

I

(
U(x, I)+Uoffset(x)−Ulcpd(x, I)

)2 (5)

+ τ ∑
I

∣∣∂ρ
′(x, I)/∂x

∣∣
1 (6)

+ ν ∑
I

∣∣∂ 2
ρ
′(x, I)/∂x2∣∣

1 (7)

The last two terms are the total variation of ρ ′(x, I) and ∂ρ ′(x, I)/∂x. Thereby, we can balance

the total variation of ρ ′ and its derivative with the least-squares search of an optimal voltage offset

Uoffset(x) and wire profile U(x, I). Essentially, τ and ν govern the smoothness of the resulting fit

of the resistivity and its derivative, respectively, by balancing the least-squares functional, eq. (5),

with terms penalizing spatial variations of ρ ′(x, I) and ∂ρ ′(x, I)/∂x. The `1 norm biases the search

towards sparse solutions; no change at all is considered better than minor changes of ρ ′.

In addition to the functional above, the solution can be constrained by the following conditions:

• Symmetry of ρ ′(x, I) and Rl,r
c around I = 0

• Continuity of ρ ′(x, I) and Rl,r
c at I = 0

• Positivity of ρ ′ and Rl,r
c

• Equality of Uoffset(x) at both electrodes, except for metals with dissimilar work function.
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The optimization is performed using CVXPY [1] and the ECOS [2] solver. The regularization

parameters (τ = 25, ν = 1000) are chosen to avoid overfitting of the data (resampled to 212 points,

∆x = 7.4nm), and to obtain a smooth resistivity profile.

3 Model of a leaky diode

The current–voltage characteristic of an idealized diode is given by the Shockley diode equation

Id(U, Is,T,η) = Is (exp(qU/ηkT )−1) , (8)

where Is is the saturation current, U is the applied voltage, q the elementary charge, k the Boltzmann

constant, and T the temperature. η is an ideality factor, which is close to unity for thermionic

emission [3]. Adding a resistance Rp in parallel to this diode, the current through a leaky diode is:

I = Id(U, Is,T,η)+U/Rp. (9)

4 Transmission line model for contact resistances

We assume a transmission line model for current injection at the electrodes [4-6]. The model des-

cribes the wire as a chain of linear, infinitesimal resistors. Each element, having a resistance R′dx

(distributed resistance R′ = dR/dx =: ρ ′), is connected to the electrode via the conductance G′dx

(distributed conductance G′). For a grounded electrode, the following system of equations describes

the behaviour at the contact,

U ′(x)+R′I(x) = 0 (10)

I′(x)+G′U(x) = 0, (11)

where I(x) and U(x) are the current and voltage of the wire segment at x, respectively. R′ is related

to the bulk resistivity ρ (in Ω m) of the wire by its cross-section A, and G′ is related to the contact
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width W and the contact resistivity ρc (in Ω m2) via

R′ =
ρ

A
and G′ =

W
ρc

. (12)

Equations (10) and (11) are solved for x≥ 0 by

U(x) =U+ exp(−γx)+U− exp(γx) (13)

I(x) =
1

R0
[U+ exp(−γx)−U− exp(γx)] (14)

LT =
1
γ
=

1√
R′G′

=

√
ρcA
ρW

(15)

R0 = R′LT =
1

G′LT
. (16)

where LT is the transfer length. U+ and U− depend on the exact boundary conditions, i.e., the contact

length L and the line termination. If the line is terminated at L with RL, then U(L) = RLI(L). Using

eqs. (13) and (14) we find

r :=
U− exp(γL)

U+ exp(−γL)
=

RL−R0

RL +R0
, (17)

with the reflection coefficient r, which balances U+ and U− given the boundary conditions. For ter-

mination with infinite resistance (RL→ ∞, r→ 1), we obtain the following well-known expressions

for U(x), I(x), and the contact resistance Rc [5]

U(x) = R0I0
cosh((L− x)/LT)

sinh(L/LT)
and I(x) = I0

sinh((L− x)/LT)

sinh(L/LT)
(18)

Rc :=
U(0)
I(0)

= R0 coth
(

L
LT

)
= R′LT coth

(
L
LT

)
. (19)

Because of the top-contact electrodes in the experiment, the wire potential U(x) is inaccessible

below the electrodes. With Rc and R′ known from the KFM measurement and analysis, the transfer

length LT can be estimated from a numerical solution of eq. (19). Once LT is known, the contact

S5



resistivity ρc = R′WL2
T can be determined. In Figure S5 we show LT and ρc as a function of bias

current, where the wire resistivity R′ = ρ ′ and contact resistance Rc are taken from fig. 3 of the main

text.
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Figure S5: Transfer lengths and contact resistivities of the two contacts. Transfer length (a) and
contact resistivity (b) as a function of bias current. (Wire resistivity ρ ′ = 3.7kΩ µm−1; contact
lengths Lleft ≈ 420nm, Lright = 250nm; contact width W = πdwire/2 = 94nm)

The current injected into the wire at x is found from Iinj(x) =−I′(x) = G′U(x). For long contacts

L� LT, both I(x) and Iinj(x) share the same exponential decay ∝ x/LT, since U− → 0. For short

contacts, this is no longer the case and the expressions in eq. (18) must be used.

We find the total power dissipated, P′tot(x), as the sum of the power through the contact, P′inj(x) =

G′U2(x), and the power dissipated in the wire, P′(x) = R′I2(x):

P′tot(x) = P′(x)+P′inj(x) = R′I2(x)+G′U2(x) (20)

=
R0I2

0
LT

cosh(2(L− x)/LT)

sinh2 (L/LT)
(21)

Integrated over the full length, we obtain the total power dissipated at the contact,

L∫
0

dxP′tot(x) = RcI2
0 . (22)
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5 Simulation and fit of temperature profiles

5.1 Heat equation

We now derive the one-dimensional heat equation for a self-heated nanowire coupled to a substrate

(and electrodes). As sketched in Figure S6, the infinitesimal wire segment of length dx at the position

x, has the cross-section A and is in contact with the substrate over the width W .

x x+dx

A
W

Figure S6: Schematic view of the nanowire on a substrate, showing the cross-section A and ther-
mal contact width W .

A temperature change of this element is related to a change of its internal energy Qtot [7],

Q̇tot = cpρA
∂T
∂ t

dx, (23)

where ρ and cp are the density and specific heat capacity of the nanowire, respectively, and T is the

temperature. The energy change Q̇tot must equal the heat flux into and out of the element, Q̇in and

Q̇out, heat loss to the substrate Q̇loss, and Joule heating of the element Qj, each with their respective

sign:

Q̇tot =−(Q̇out− Q̇in)− Q̇loss + Q̇j. (24)

By Fourier’s law, the heat flow into and out of the element are [7]

Q̇in = −κA
∂T
∂x

∣∣∣∣
x

and Q̇out = −κA
∂T
∂x

∣∣∣∣
x+dx

, (25)
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where κ is the thermal conductivity of the nanowire. In the limit of dx→ 0, we find

−(Q̇out− Q̇in) =
∂

∂x

[
κA

∂T
∂x

]
dx. (26)

Similarly, heat loss to the substrate is governed by heat conduction (κs) through the cross-section

Wdx with the substrate (temperature T0) and a small separation ts,

Q̇loss =−κsW
T0−T

ts
dx = τW (T −T0)dx, (27)

where we have introduced the thermal conductivity to the substrate, τ := κs/ts (in W m−2 K−1). The

product of τ and W defines the thermal conductance to the substrate per unit length (in W m−1 K−1),

g := τW . Note that eq. (27) assumes that the substrate next to the nanowire is at the same tempe-

rature T0 everywhere, i.e. the substrate spreading resistance is negligible compared to the interfacial

resistance.

Joule heating for the element at x is

Q̇j = q̇jdx, (28)

where q̇j = ρ ′(x)I2 is the power dissipated per unit length for a current I driven through the wire

(linear resistivity ρ ′).

Combining eqs. (23) to (28), we obtain the one-dimensional heat equation for a self-heated na-

nowire, also given by [8],

cpρA
∂T
∂ t

=
∂

∂x

[
κA

∂T
∂x

]
− τW (T −T0)+ q̇j. (29)

In the steady-state, ∂T/∂ t→ 0, we find

− ∂

∂x

[
κA

∂T
∂x

]
+ τW (T −T0) = q̇j. (30)
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We posed no restriction on the nature of κ , τ , A, and W , i.e., they may also be functions of x.

For the solution, we assume Dirichlet boundary conditions

T (x = 0) = T0 and T (x = L) = T0, (31)

where L is the total wire length.

5.2 Numerical solution

We only consider the steady-state heat equation here, eq. (30), i.e., we assume that for each bias

applied to the nanowire device, the temperature field follows immediately. This is a reasonable

assumption when the time constant τ = A/α determined by the thermal diffusivity α = κ/cpρ is

negligible.

Furthermore, we assume uniform thermal conductance κ along the nanowire with a uniform

cross-section A= π(60nm/2)2. We assume the same thermal conductance ge = τeWe of the nanowire

segments to the left and right electrodes. Similarly, we choose the same conductance to the substrate

gs = τsWs for the center region between the electrodes.

For dc operation, heat generated in the nanowire is due to Joule heating, q̇j = ρ ′(x)I2. For heat

dissipated at the contacts, we consider the power distribution obtained from the transmission line

model, eq. (21).

To compare with temperature profiles obtained by SThM under ac bias, we calculate for each ac

current the average power dissipated per unit length in the wire and along the contacts. This is done

by calculating the instantaneous power during a sinusoidal current bias, and finally integrating over

one period. At the contacts, we average in this process over the different contact resistivities and

transfer lengths.

For the numerical solution, eq. (30) is discretized with central differences, and the resulting linear

system is solved numerically for the temperature.
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5.3 Fit and error estimation

To obtain κ , gs, and ge, we perform a least-squares fit of the calculated temperature field T̂ (via

eq. (30)) to the profiles T obtained by SThM for each power P,

{κ,Us,Ue}= argmin ∑
Pj∈P

∑
xi∈x

1
σ2

T(xi,Pj)

(
T̂ (xi,Pj,κ,Us,Ue)−T (xi,Pj)

)2
, (32)

where σT (xi,Pj) describes the temperature uncertainty of the measurements. The fit is performed

using the optimize.least_squares method from SciPy [9]. Errors in the fit parameters are

calculated from the diagonal elements of the fit covariance matrix.

The fit requires proper alignment of SThM and KFM profiles, which is not straightforward due

to different tip convolution with the SThM and KFM probes in topography. For this reason, we only

consider the center wire segment in the fit and exclude contact edges. To estimate the worst-case

temperature error due to data alignment, we calculate the maximum squared deviation from shifting

the temperature data T (x) by a distance δ . For discrete temperature samples yi = T (xi) with xi = i∆x,

and h≡ δ/∆x, we have

σ
2
max(h) = max

i∈[1,N−h]

{
(yi+h− yi)

2
}
. (33)

The maximum squared deviation resulting from the alignment uncertainty σx is obtained by

weighting with a Gaussian window (∝ exp(−(h∆x)2/2σ2
x )) integrating eq. (33). With σx = 10nm,

the worst-case error for the dataset in fig. 1 of the main manuscript is σT,shift = 0.23K, whereas the

measurement noise level amounts only to σT,meas = 31mK. The total uncertainty in temperature is

calculated from

σ
2
T(xi,Pi) = σ

2
T,meas +σ

2
T,shift. (34)

Figure S7 shows the best-fit parameter values with 2σ error bars.

We estimate the relative accuracy of the temperature calibration in our SThM measurements to
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Figure S7: Substrate and electrode couplings fitted as a function of the nanowire thermal con-
ductivity κ . (a) Mean square weighted deviation of the fit from scanning thermal measurements,
χ2

ν = ∑(T̂ −T )2/(ν σ2
T), with ν degrees of freedom. χ2

ν � 1 indicates a good fit within the speci-
fied errors. (b) Thermal conductance to substrate gs = τsWs. (c) Thermal conductance to electrodes
ge = τeWe. Error bars (2σ ) are calculated given the total uncertainty of thermal measurements,
which includes a worst-case estimate of the error resulting from the alignment (σx = 10nm) of
experimental data with the nanowire model. To account for the accuracy of the temperature calibra-
tion, a relative error of 30 % must be considered in addition.

η ≈ 25% [10] with respect to the substrate temperature T0. From the heat equation in eq. (30),

it follows that after a change of the temperature to (1±η)(T −T0), both the thermal conductivity

κ and the thermal interface conductivity τ must change by a factor of 1/(1±η). Therefore, we

estimate the systematic relative error due to temperature calibration to

∣∣∣∣κ ′−κ

κ

∣∣∣∣= ∣∣∣∣τ ′− τ

τ

∣∣∣∣= ∣∣∣∣ 1
1±η

−1
∣∣∣∣≈ ∣∣−η +η

2∣∣< η +η
2 ≈ 30%. (35)

The errors stated in the main text include both the random error, due to eq. (34), and systematic

error, eq. (35).
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