Supporting Information

for

Co-reductive fabrication of carbon nanodots with high quantum yield for bioimaging of bacteria

Jiajun Wang¹, Xia Liu¹, Gesmi Milcovich², Tzu-Yu Chen³, Edel Durack², Sarah Mallen², Yongming Ruan¹, Xuexiang Weng^{*1} and Sarah P. Hudson^{*2}

Address: ¹College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, PR China, ²Department of Chemical Sciences, Bernal Institute, University of Limerick, Castletroy, Ireland and ³School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK Email: Xuexiang Weng - xuexian@zjnu.cn; Sarah P. Hudson sarah.hudson@ul.ie

* Corresponding author

Additional experimental data

Content

- 1. The generality of co-reduction method with urea and thiourea to obtain C-dots (Table S1).
- 2. The scale-up synthesis of C-dots (Table S2).
- 3. TEM and size distribution of S_{b50} (Figure S1).
- 4. XRD patterns of S_{a} , $S_{b and} S_{e}$ (Figure S2).
- 5. Raman spectra of S_a , S_b and S_e (Figure S3).
- Deconvoluted C1s XPS spectra of different C-dots with peak area (A) ratios of the sp³ C or oxidized C to the sp² C (Table S3).
- Deconvoluted N1s XPS spectra of different C-dots with A ratios of the pyrrolic N to pyridinic N (Table S4).

Serial ^a	Different carbon sources (mmol)	Urea (mmol)	Thiourea (mmol)	QY (%)
S 1	Glucose (0.28)	1.26	0.42	16
S1U	Glucose (0.28)	1.68	0	3
S1T	Glucose (0.28)	0	1.69	2
S 2	Xylose (0.28)	1.26	0.42	14
S2U	Xylose (0.28)	1.68	0	1
S2T	Xylose (0.28)	0	1.69	2

Table S1: The general co-reduction method with urea and thiourea to obtain C-dots.

^aAll the samples were dissolved in 30 mL of water.

Serial ^a	Sodium citrate (mmol)	Urea (mmol)	Thiourea (mmol)	Quantitative yield (g)	QY (%)
S _{a50}	14.0	84.0	0	3.08	10
S_{b50}	14.0	63.0	21.0	5.95	25
S _{e50}	14.0	0	84.0	4.85	2

 Table S2: The scale-up synthesis of C-dots.

^aAll the samples were dissolved in 30 mL of water.

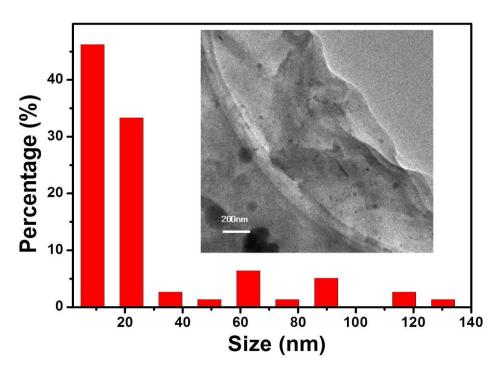


Figure S1: The TEM image (inset) and size distribution of $S_{b50.}$

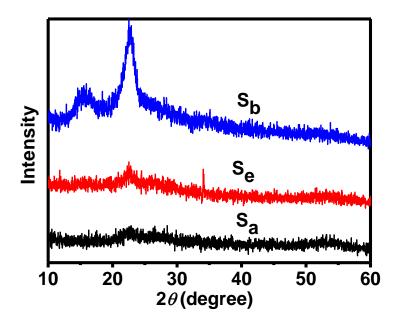


Figure S2: XRD patterns of $S_{a,} S_{b and} S_{e}$.

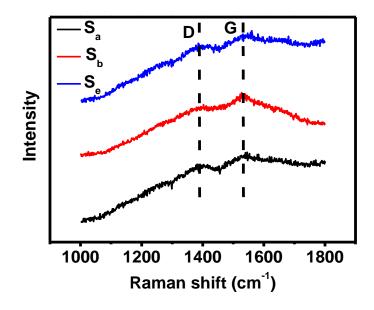


Figure S3: Raman spectra of S_a , S_b and S_e .

Sample	Band	$sp^2 C$	sp ³ C	Oxidized C
S _a	Position/eV	284.2	285.4	287.5
	Area	16934.0	5557.4	15158.3
	$A/A_{\rm sp^2 C}$	1	0.328	0.895
$\mathbf{S}_{\mathbf{b}}$	Position/eV	284.7	286.0	288.1
	Area	24323.5	14305.8	12436.8
	$A/A_{sp}^{2}C$	1	0.588	0.511
S _e	Position/eV	284.3	285.5	287.8
	Area	15281.0	11066.1	8056.7
	$A/A_{\rm sp}{}^2{}_{\rm C}$	1	0.724	0.527

Table S3: Detailed information of the deconvoluted C 1s XPS spectra of different C-dots with peak area (*A*) ratios of the $sp^3 C$ or oxidized C to the $sp^2 C$.

Table S4: Detailed information of the deconvoluted N 1s XPS spectra of different C-dots with peak area (A) ratios of the pyrrolic N to pyridinic N.

Sample	Band	Pyrrolic N	Pyridinic N
$\mathbf{S}_{\mathbf{a}}$	Position/eV	-	399.0
	Area	-	7441.4
	$A/A_{\rm pyridinic N}$	0	1
S _b	Position/eV	399.8	398.0
	Area	9550.8	15273.3
	$A/A_{\rm pyridinic N}$	0.625	1
S _e	Position/eV	399.4	397.5
	Area	12495.6	9216.9
	$A/A_{\rm pyridinic N}$	1.356	1