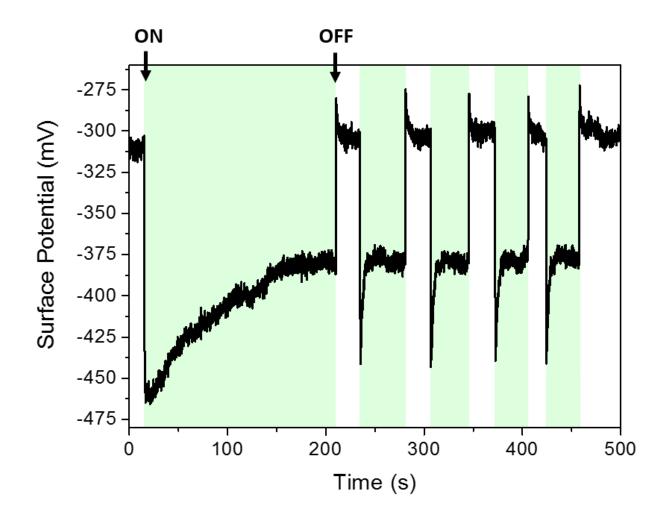
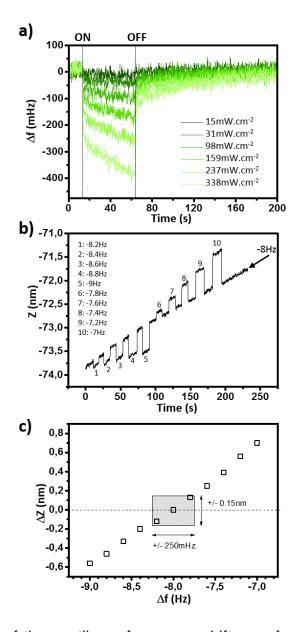
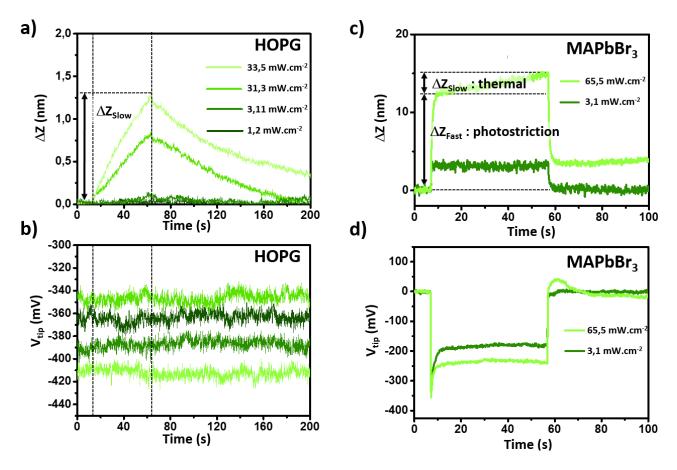
Supporting Information

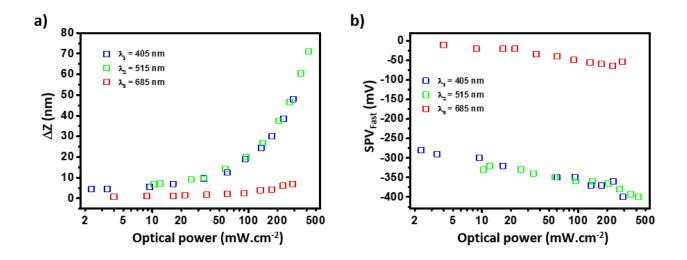

for

Multimodal noncontact atomic force microscopy and Kelvin probe force microscopy investigations of organolead tribromide perovskite single crystals


Yann Almadori¹, David Moerman², Jaume Llacer Martinez², Philippe Leclère², and Benjamin Grévin^{*1} Address: ¹Université Grenoble Alpes, CNRS, CEA, INAC-SyMMES, 38000 Grenoble, France, and ²Laboratory for Chemistry of Novel Materials, Center of Innovation and Research in Materials & Polymers (CIRMAP), University of Mons, Place du Parc 20, B7000 Mons, Belgium Email: Benjamin Grévin* - <u>benjamin.grevin@cea.fr</u>

* Corresponding author


Additional experimental data


Figure S1: Plot of the KPFM surface potential as a function of time during five successive illumination sequences ($\lambda = 515$ nm, P_{opt} = 2.95 W/cm²).

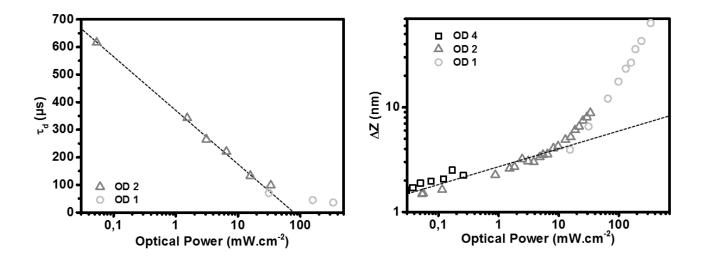

Figure S2: (a) Plots of the cantilever frequency shift as a function of time recorded during illumination sequences with increasing optical powers. The fast photo-response of the frequency shift is at maximum equal to 250 mHz.NB: these measurements have been performed with the tip kept at a fixed position 1μ m away from the sample surface. (b) Tip height as a function of time. The frequency shift set-point (-8Hz for the line base) is changed while keeping the z-regulation active. (c) Relative height change as a function of the frequency shift setpoint deduced from the data presented in b). From these data, we estimate that a frequency detuning of 250 mHz shall induce a z-artefact of 0.15 nm.

Figure S3: (a,b) Plots of the tip height change relative to its initial position (a) and of the KPFM surface potential (b) and as a function of time during illumination sequences ($\lambda = 515$ nm) performed with 4 different optical powers on an HOPG substrate. (c,d) Plots of the tip height change relative to its initial position (c) and of the KPFM surface potential (d) and as a function of time during illumination sequences ($\lambda = 515$ nm) performed with 2 different optical powers on the MAPbBr₃ single crystal. The curves of the surface potential have been normalized by shifting the y-values in such a way that the SP at t = 0 is equal to 0 mV.

Figure S4: (a,b) Photostrictive signal (a) and fast component of the surface photovoltage (b) as a function of the optical power for three different wavelength.

Figure S5: (a) SPV decay time constant measured by FMI-KPFM as a function of the optical power. (b) Photostrictive signal as a function of the optical power in log-log scale. $\lambda = 515$ nm. The dotted lines in a) and b) are only guidelines for the eye.