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1 Expressions for the induced potential using the image-charge

method

1.1 Introduction

The electrostatic potential φb produced by the environment is calculated from the interaction between

the nanowire charge density and bound charges it creates at the surrounding medium shown in Figure

1 of the main text. To do this we use the method of the image charges. We model the nanowire as

a semiconductor rod of square section of relative permittivity ε , length L and rectangular section of

width W = 2R, R being the half-width. We assume that the charge density ρ (~r) of the nanowire is

located along its symmetry axis (x-axis) as a linear charge density. The nanowire faces are in contact

with different dielectric materials of permittivities ε1 (substrate), ε2 (superconducting shell), ε3 and

ε4 (surrounding medium); while two metal leads of permittivities εM1 and εM2 are placed at both ends

of the nanowire. In order to gain more insight into the solution of this problem, we solve first some

simpler cases. In the first section we obtain the electrostatic potential created by a linear charge

density placed before one, between two, and before two infinite planes. These problems can be

understood as 1D problems. In the second section we obtain the potential with all four surrounding

media but without the bulk leads, which can be treated as a 2D problem. Finally, in the third section

we obtain the full model including also the interaction with the leads.

1.2 One dimension

1.2.1 One infinite plane

The solution of this problem can be found in textbooks on electromagnetism [1]. When one charge q

is placed (at the origin of coordinates) in a medium of dielectric constant ε and at a distance R from

the interface between this and another medium of permittivity ε1, a bound charge of magnitude κ1q

appears spread at the interface, where

κ1 ≡
ε− ε1

ε + ε1
. (S1)
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The effect of this bound charge is equivalent to that of a point charge of the same magnitude and

located at a specular distance with respect to the plane from the original charge, see Figure S1a.

This is why it is called an image charge. The classical electrostatic potential due to the interaction

between the original and the image charge through Coulomb’s law takes the form

φb (x) =
1

4πεε0

κ1q√
(2R)2 + x2

, (S2)

where ε0 is the vacuum permittivity. Because φb is linear in q, this result can be generalized to an

arbitrary 1D density charge ρ (x):

φb (x) =
1

4πεε0

∫
κ1ρ (x′)√

(2R)2 +(x− x′)2
dx′. (S3)

As argued in [2], since the bound charges are distinguishable from the nanowire charges (cannot

tunnel in and out), this potential can be directly transformed into a quantum operator as a Hartree

interaction without any Fock correction. Assuming a purely local polarizability (Thomas–Fermi

limit), the density operator may be transformed as ρ (x′)→ 〈ρ (x′)〉, which is perfectly equivalent to

the above classical equation. Then, the potential takes the form

φb (x) =
∫

Vb
(
x,x′
)〈

ρ̂
(
x′
)〉

dx′, (S4)

where the kernel Vb (x,x′) ≡ κ1/4πεε0

√
(2R)2 +(x− x′)2 encodes the geometrical information of

the interaction.

We note that Equation S4 is general for any geometry and charge density. For this reason, in the

following sections we first obtain the kernel function Vb for a given geometry using a single original

charge, and then we generalize our results to an arbitrary density ρ (x) and to its corresponding

quantum expression using Equation S4.
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Figure S1: Configuration of the image charges produced by the original charge (in black) studied
in different Sections. The original charge is in a medium of dielectric constant ε (green color in the
plots) that extends in the third direction. (a) Sec. IA: a charge in front of an infinite semi-space of
permittivity ε1 at a distance R. (b) Sec. IB: a charge between two semi-infinite and parallel regions
of permittivities ε1 and ε3. (c) Sec. IIA: a charge close to the intersection between two media of
permittivities ε1 and ε2. (d) Sec. IIB: a charge between four different media. As before, the black
point depicts the real charge, while the red, purple and orange points depict the first, second and third
image charges found in the first, second and third steps of the image method procedure, respectively.
For (a) and (c) all the image charges are shown, whereas for (b) and (d) there is an infinite number
of them and only the first ones are shown. Black solid lines are interfaces, and black dashed lines
are image interfaces.

1.2.2 Two opposite infinite planes

We now consider a charge between two infinite and parallel planes separating the dielectric constant

of the nanowire ε from two other media of permittivities ε1 and ε3 (see Figure S1b). In order to try to

satisfy the boundary conditions imposed by the Gauss’ law, in a first step two image charges κ1q and

κ3q are required in each dielectric medium at the same distance R from the interface (see red dots

in Figure S1b). However, each image charge does not satisfy the boundary condition with respect to

the opposite interface. For this reason, in a second step, two (accidentally equals) additional image

charges of magnitude κ1κ3q are required at a distance 3R from each interface (see purple dots in

Figure S1b). But, again, these additional image charges do not satisfy the boundary conditions with
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respect to the opposite interfaces and another step must be taken. It is possible to see that for each

image charge q(n)α in the dielectric α created at the n-th step of the image charge method, another

image charge

q(n+1)
β

= κβ q(n)α (S5)

is required in the opposite β dielectric at a distance 2(n+1)R from the original charge q in order

to satisfy the boundary conditions, with q(0)
α,β = 1. Thus, the interaction kernel takes the form of an

infinite series

Vb (x) =
1

4πεε0

∞

∑
n=1

 q(n)1 +q(n)3√
x2 +(2nR)2

 . (S6)

Note that each term of the sum decreases with n as V (n)
b ∼ κn/n. Since |κ|< 1 for a dielectric medium

and κM = −1 for a metallic one (where εM → ∞), then the kernel converges to Vb ∼ ln(1−κ) in

spite of the infinite summation.

1.2.3 Two consecutive infinite planes

Finally, we consider the case depicted in Figure S2a where a (real) charge q is placed in a dielectric

material characterized by a permittivity εA. This charge is at a distance R from a first interface with

a material of dielectric constant εB and width W , and at a distance R+W from a second (parallel)

interface with another medium of permittivity εC. As we know, the real charge q creates an image

charge κBq at a distance 2R from it inside the εB medium. However, the potential created by both

charges is only valid inside the εA medium. The potential created inside the εB medium can be

found using the image method [1]: It is the same potential than that created by an image charge

of magnitude q[2εA/(εA + εB)] located at the same position of the real charge. From this point,

the same steps explained in the previous subsection can be followed, and once the infinite series is

obtained, the potential can be transformed back to the εA medium. Thus, one can prove that the
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bound charges potential is given by

Vb = q
4πεAε0

(
1

εA+εB

)[
εA−εB√
x2+(2R)2

+

+ 4εAεB
εB−εA

∑
∞
n=1

(
(εB−εA)(εB−εC)
(εB+εA)(εB+εC)

)n

√
x2+(2R+2nW )2

]
. (S7)

Since this expression is rather complex, it is convenient to replace the effect of both media εB and εC

by just one characterized by an effective permittivity εeff which, from an electrostatic point of view,

is equivalent. Hence, the bound charges potential would be given by Equation S2 with ε → εA and

ε1→ εeff. Comparing both equations, the effective permittivity (at x = 0) is

εeff = εA
1−κeff

1+κeff
, (S8)

where

κeff =
1

εA + εB
[εA− εB+

+
4εAεB

εB− εA

∞

∑
n=1

1
1+nW

R

(
(εB− εA)(εB− εA)

(εB + εC)(εB + εC)

)n
]
. (S9)

We note that this system corresponds to the nanowire–SC shell–vacuum double interface of Figure

1a of the main text. There, the effect of the shell finite width and the vacuum on top has been

condensed in an effective SC permittivity. This means that, in Equation S8, εeff → εSC, εA → ε ,

εC→ εa and εB is the true SC thin film permittivity εtf.

In Figure S2b we show the effective SC permittivity εSC considered in the main text as a function of

εtf for two different shell widths WSC. Notice that, as the SC shell becomes thinner (red curve corre-

sponds to 8 nm), the effective permittivity gets more renormalized. A value εSC ∼ 100 corresponds

to εtf ∼ 4000.
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Figure S2: (a) System studied in Sec. IC. A charge (black dot) is in a medium of dielectric constant
εA (the nanowire) and placed at a distance R from a thin material of permittivity εB and thickness
W (the SC shell). Above the thin film there is another semi-infinite space of permittivity εC (the
vacuum). When all the permittivities are finite, bound charges arise in both surrounding mediums.
(b) Effective SC permittivity εSC calculated using Equaiton S8 vs the SC thin film permittivity εtf
for two different film thicknesses WSC. Parameters are the same as in the main text.

1.3 Two dimensions

1.3.1 One rectangular corner

This is also a textbook problem [1]. A charge q inside a dielectric with permittivity ε is placed at

a distance R1 from dielectric ε1 and at a different distance R2 form dielectric ε2, which are perpen-

dicular to one another (see Figure S1c). To satisfy the boundary conditions, two image charges κ1q

and κ2q are required in each dielectric at (x,−2R1,0) and (x,0,−2R2), see red dots. Because of

these, another image charge of magnitude κ1κ2q is required at (x,−2R1,−2R2), purple dot. In this

case, and due to the closed geometry of the problem, three image charges are enough to satisfy the

boundary conditions. The kernel function takes thus the form

Vb (x) =
1

4πεε0

 κ1√
x2 +(2R1)

2
+

κ2√
x2 +(2R2)

2
+

+
κ1κ2√

x2 +(2R1)
2 +(2R2)

2

 . (S10)

1.3.2 Four rectangular corners: interaction without the leads

Now a charge q is placed inside an infinite wire of rectangular section and of permittivity ε , see

Figure S1d. This charge is at a distance R1 from two parallel flat dielectrics with permittivities ε1
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and ε3, and at a distance R2 from another two parallel dielectrics with permittivities ε2 and ε4 which

are perpendicular to the previous ones. Combining what we have learned in the previous Sections,

to satisfy the boundary conditions an infinite ensemble of image charges have to be placed in the

different dielectrics as shown in Figure S1d. For each image charge in one dielectric, another one

appears at a specular distance from the opposite interface, while for each two image charges placed

in two perpendicular media, just one more appears at the corner. The electrostatic potential due to

all these charge is given by

Vb (x) =
1

4πεε0

 ∞

∑
n,m=1


(

q(n)1 +q(n)3

)(
q(m)

2 +q(m)
4

)
√

x2 +(2nR1)
2 +(2mR2)

2

+

+
∞

∑
n=1

 q(n)1 +q(n)3√
x2 +(2nR1)

2
+

q(n)2 +q(n)4√
x2 +(2nR2)

2

 , (S11)

where: 

q(n+1)
1 = κ1q(n)3 , q(n+1)

2 = κ2q(n)4 ,

q(n+1)
3 = κ3q(n)1 , q(n+1)

4 = κ4q(n)2 ,

q(0)α = 1 ∀α = {1,2,3,4} .

(S12)

If the wire’s section is square (R1 = R2), then the kernel function can be rewritten in a more compact

way:

Vb (x) =
1

4πεε0

∞

∑
n,m=0


(

q(n)1 +q(n)3 −δn,0

)(
q(m)

2 +q(m)
4 −δm,0

)
√

x2 +(2nR)2 +(2mR)2

(1−δn+m,0) . (S13)

Note that the number of charges increases as 4n at each n-th step of the image charge method,

whereas the rest of the expression inside the brackets decreases as κn/n as before. Thus, each term
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of the sum goes as V (n)
b ∼ κn and the infinite sum is proportional to Vb ∼ κ/(1−κ) if |κ| < 1, so

the convergence of the kernel is ensured in this case as well.

1.4 The full model

Finally, we solve the full system of Figure 1 of the main text. Now, apart from the four dielectric

media in each of the four faces of the square section, there are another two faces in the x-direction

in contact to metallic regions. We consider that the nanowire has a square section of semi-width R.

First, we assume that the charge q is placed at the coordinates origin and at the same distance R from

each metallic region M1 and M2. Following the same procedure as before we obtain

Vb (x) =
1

4πεε0

∞

∑
n,m,k=0


(

q(n)1 +q(n)3 −δn,0

)(
q(m)

2 +q(m)
4 −δm,0

)
q(k)M1√

(x+2kR)2 +(2nR)2 +(2mR)2
+

+

(
q(n)1 +q(n)3 −δn,0

)(
q(m)

2 +q(m)
4 −δm,0

)(
q(k)M2
−δk,0

)
√

(x−2kR)2 +(2nR)2 +(2mR)2

(1−δn+m+k,0
)
, (S14)

where 
q(n+1)

M1
= κM1q(n)M2

, q(n+1)
M2

= κM2q(n)M1
,

q(0)α = 1 ∀α = {M1,M2} .
(S15)

If now the charge q is placed at an arbitrary position x′ inside the nanowire, and the metal M1

interface is at x = 0 and the M2 interface is at x = L, then the kernel function is given by
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Vb (x) =
1

4πεε0

∞

∑
n,m,k=0


(

q(n)1 +q(n)3 −δn,0

)(
q(m)

2 +q(m)
4 −δm,0

)
q(k)M1√(

x− (−1)k
(

2floor( k
2+1)L−2L+ x′

))2
+(2nR)2 +(2mR)2

+

+

(
q(n)1 +q(n)3 −δn,0

)(
q(m)

2 +q(m)
4 −δm,0

)(
q(k)M2
−δk,0

)
√(

x+(−1)k
(

2floor( k+1
2 )L− x′

))2
+(2nR)2 +(2mR)2

(1−δn+m+k,0
)
. (S16)

If L is large enough compared to 2R, we can take into account only the lowest order of the image

charges at the metals, q(k=0,1)
Mi

, and the number of charges at each n-th step of the image charge

method increases only as ∼ 12n. Then, the system follows the same convergence criterion as in the

previous section. If L∼ 2R, Equation S16 converges as well, but the demonstration is longer.

2 Further details on numerical methods

2.1 Mean field approximation to treat electron-electron interactions

We want to solve the energy spectrum of the nanowire Hamiltonian Ĥ when the interaction between

electrons φ̂ is included. In general, this interaction can be written in second quantization as

φ̂ = ∑
α,β

č†
α čαVαβ č†

β
čβ , (S17)

where č†
α , čα are defined as the Nambufied vector of operators

č†
α =

(
c†

1↑,c
†
1↓,c

†
2↑, ...,c

†
N↓,c1↑,c1↓,c2↑, ...,cN↓

)
. (S18)

Here, c†
iσ and ciσ are electron creator/annihilation operators with quantum numbers α . Vαβ above

encodes the electronic interaction. Therefore, Greek indexes α,β encode both particle/hole char-
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acter, spin (↑,↓), and any other indexes the electron might have, such as site index i = 1, ...,N in a

tight-binding description.

To treat the quartic interaction we resort to a mean field approach called the Hartree–Fock–

Bogoliubov (HFB) approximation. Using the Wick’s theorem and neglecting fluctuations and con-

stant terms we can write

φ̂eff = ∑
α,β

Vαβ

[〈
č†

α čα

〉
č†

β
čβ +

〈
č†

β
čβ

〉
č†

α čα +
〈

č†
α čβ

〉
č†

β
čα+

+
〈

čα č†
β

〉
č†

α čβ −
〈

č†
α č†

β

〉
čα čβ −

〈
čα čβ

〉
č†

α č†
β

]
. (S19)

The first two terms are known as Hartree terms, which include information about direct (repul-

sive/attractive) interaction between electrons. The second and third are the Fock terms, which in-

clude the exchange interaction due to the electron indistinguishable properties. These terms ensure

that non-physical self-interactions introduced by the first terms are cancelled. The last two are known

as Bogoliubov terms, which include possible pairing correlations between electrons.

We want to rewrite Equation S19 in a more compact manner. In order to do that, we define two

matrices:

• The lambda matrix:

Λ≡ Ispace⊗ I2×2⊗σx, (S20)

where Ispace is the identity matrix in real space (for a one-dimensional tight-binding model

with N sites, this matrix is the N×N identity), I2×2 is the identity matrix in spin space, and

σx is the Pauli x-matrix in Nambu space. This matrix satisfies the property č† = Λč.

S11



• The density matrix:

ραβ ≡
〈

č†
α čβ

〉
. (S21)

We can express this matrix in terms of the eigenvectors γn of the Hamiltonian Ĥ+eφ̂eff, which

are related to the čα ’s through a unitary transformation Ψ as γn = Ψnα čα . Then

ραβ =
〈

č†
α čβ

〉
= Ψ

∗
αn

〈
γ

†
n γm

〉
Ψmβ =

(
Ψ

†FΨ

)
αβ

, (S22)

where Fnm ≡
〈
γ†

n γm
〉
= fFD (εn)δnm is the Fermi–Dirac distribution matrix.

Using these two matrices, Equation S19 can be rewritten as

φeff = 2D [V ·d {ρ}]+Λ · (V ?ρ) ·Λ+V ? (Λ ·ρ ·Λ)−

−Λ · (V ? (ρ ·Λ))− (V ? (Λ ·ρ)) ·Λ, (S23)

where we assume a symmetric potential Vαβ = Vβα . Here we have used the notation D [v] as the

diagonal matrix with vector v in its diagonal, d {A} as a column vector whose elements are the

diagonal elements of matrix A, the dot product A ·B as a matrix product, and the star product A ?B

as an element wise product between matrices.

However, Equation S23 does not have Nambu structure because in general Viστ,iστ 6= Viστ̄,iστ̄ , so

Bogoliubov–de Gennes formalism cannot be applied. We symmetrize this expression by doing

č†
φeffč = č†

(
φeff−Λφ t

effΛ

2

)
č+ cnst., (S24)

where we have used the anticommutation relation
{

c,c†} = 1, the property Λt = Λ and we neglect

constant terms again. Thus, the general interaction between electrons in the HFB approximation can
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be written as

φ
HFB =

1
2

č† (
φeff−Λφ

t
effΛ
)

č, (S25)

where φeff is given by Equation S23.

2.2 Inclusion of the intrinsic interaction

The interaction between the electrons inside the nanowire (intrinsic interaction) is given, in principle,

by the bare Coulomb potential in one dimension. Taking into account the finite radius (half-width)

R of the wire, a more precise form for the interaction is [3]

V (x) =
√

π

4πεε0R
ex2/R2

Erfc
(
|x|
R

)
, (S26)

where x is the distance between electrons.

When we consider this potential only at the Hartree level, we find zero energy pinning around parity

crossings, just like we did with the extrinsic interaction. However, this pinning is unphysical since

it comes from spurious self-interaction terms introduced by the Hartree approximation [2]. For the

intrinsic interaction it is thus necessary to include the Fock correction due to the indistinguishability

of electrons in the nanowire.

If we consider the bare interaction, Equation S26, in the Fock terms, an overcompensation of the

pinning effect is found and unphysical jumps appear at each parity crossing. To cure this problem,

we introduce screening in the quasi-static Thomas–Fermi limit so that the potential in the Fock

terms acquires an additional exponential decay e−|x|/λTF that depends on the Thomas–Fermi length

λTF, which should be of the order of the Fermi wavelength. In this case, we find that the parity

crossings induced by the intrinsic interaction are suppressed, in agreement with the self-interaction

argument.
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If the nanowire is discretized using a tight-binding model, the interaction can be written as

Vα,β =

√
π

4πεε0R
exp

{(
i− j
aR

)2

− |i− j|
aλTF

}
·

·Erfc
(
|i− j|

aR

)[
1−δα,β

]
, (S27)

where the indexes α = {i,σ ,τ} and β = { j,σ ′,τ ′} include all the quantum numbers of the electrons,

a is the distance between two neighboring sites (lattice constant), and the term
[
1−δα,β

]
ensures

that an electron cannot interact with itself. As stated before, the above equation is only valid for the

Fock terms, while for the Hartree terms it is the bare interaction (same expression with λTF→ ∞).

Then, one can obtain the potential in the HFB approximation using Equation S25.

The electron–electron interaction between the nanowire and the bound charges of the dielectric en-

vironment (extrinsic interaction) is found in Section 1, and it may be implemented following the

same procedure by substituting x→ (i− j)/a. We note that now the term 1
[
1−δα,β

]
should not

be included since electron α is always inside the nanowire while β is outside, in the surrounding

medium (or the other way around). Finally, the potential in the HFB approximation can be computed

using Equation (S25), but now the Fock and the Bogoliubov terms have to be ignored as we argued

in Section 1, so that the last four terms of Equation S23 are not considered.

2.3 Numerical self-consistent method used to solve the eigenspectrum

We note that Ĥ + eφ̂ HFB depends on its own eigenvectors (see Equation S22), and thus it has to be

solved self-consistently. We solve this problem numerically using the following procedure: in the

first iteration of the self-consistent method, we find the density-matrix ρ using the eigenvectors of

the Hamiltonian Ĥ as a test solution. In the next step we obtain a new ρ diagonalizing Ĥ + eφ̂ HFB

where the interaction has been obtained using the previous density matrix. In the following steps,

the density matrix is found using a linear combination of the eigenvectors of Ĥ + eφ̂ HFB in the two

previous iterations. This is done to introduce damping in the iteration procedure in order to ensure

the convergence of the self-consistent method. In each step, we compare the eigen-energies of
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Ĥ+eφ̂ HFB with those of the previous step. We repeat this procedure until convergence. We consider

the iteration has converged when the difference between both energy spectra is much smaller than

the main energy scale of our problem i.e., the superconductor gap ∆.

3 Nanowire spectrum including the intrinsic interaction

Here we show that the features studied in the main text (zero-energy pinning and QD formation)

remain qualitatively unaltered when including electron–electron interactions φint inside the nanowire.

The intrinsic interaction introduces small quantitative changes in the spectrum, but the qualitative

behavior stays the same. Following our previous work [2], we treat this interaction at the mean field

level, within the Hartree–Fock–Bogoliubov approximation, and assume a bare Coulomb interaction

for the Hartree terms and a screened Coulomb interaction in the quasi-static Thomas–Fermi limit for

the Fock terms (see Section 2 for more details).
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Figure S3: Majorana nanowire in the presence of interactions (including the influence of the bulk
normal leads at its ends). Self-consistent induced potential energy eφb(x) along the length of the
wire for increasing values of the Zeeman splitting ignoring (a) and including (b) the electron-electron
interactions inside the nanowire. (c) and (d) are their corresponding energy spectra. Wire parameters
are the same as in the main text, and the Thomas–Fermi length is λTF = L/3

In Figure S3 we show the bound charges electrostatic potential along the nanowire and the energy

spectrum versus the Zeeman field ignoring (Figure S3a,c) and including (Figure S3b,d) the intrinsic

interaction. Note that here we do not include the Bogoliubov correction since this term just renor-
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malizes the gap as shown in [2]. In general, both spectra are qualitatively similar and thus we can

conclude that the intrinsic interactions do not alter the features studied in the main text. However,

there are some quantitative differences. First, the dispersive QD levels approach zero energy at a

slightly smaller Zeeman energy as a result of small changes in the induced potential φb, as can be

seen in Figure S3d. Second, the position of the gap closing and thus, the topological phase transi-

tion, shifts to a different magnetic field. This is also a consequence of small changes in φb, as well as

small changes in the Zeeman energy induced by the Fock terms, that modify the value of the critical

Zeeman field through Equation 4 of the main text. Finally, the energy splitting of the Majoranas is

larger due to the renormalization of the Fermi momentum induced by the Fock terms as well.

4 Robustness of the pinning effect

We want to test the validity of our results when varying different parameters of the electrostatic

environment and the location of the Majorana wave function across the nanowire section. Figure S4

provides various phase diagrams indicating the occurrence of MBS zero-energy pinning (in red) as

a function of the different parameters. Although we have taken µ = 0.5meV for the simulations of

the main text, pinning is general for all chemical potentials (within the topological phase), as can be

seen in the upper panels of Figure S4. As a function of µ and VZ, the non-interacting lines of Figure

S4 a corresponding to point-like parity crossings transform into incompressible finite width stripes

in the interacting case (Figure S4b). Pinning regions are bigger for lower chemical potentials and for

higher magnetic fields, since the repulsive interaction is larger too. It can also be observed that the

onset of the topological phase is different in the interacting system than in the non-interacting one

(black dashed line), at least for positive µ . This is because the electrostatic potential renormalizes

the chemical potential [4] and thus it modifies the value of the bulk critical magnetic field given in

Equation 4 of the main text.

However, pinning is not general for all kind of environments or Majorana charge density position.

Figure S4c shows the zero energy regions across the VZ− εSC space (the µ − εSC diagram exhibits

a similar behavior). For εSC & 300 the pinning plateau width shrinks into points because the elec-
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trostatic environment turns into an attractive one. This means that bound charges of the opposite

sign arise in the dielectric medium at these large permittivities, so that the entrance of charge at each

parity crossing is no longer suppressed. Note that εSC represents the effective SC permittivity of the

system composed by a SC thin film (epitaxially grown over the nanowire) of intrinsic permittivity

εtf, finite width WSC and covered by vacuum, as we argue in Section 1.2.3. For a film width of 8 nm,

an effective εSC & 300 corresponds to a SC permittivity of εtf & 15000, i.e., basically a perfect metal.

The width of the nanowire also plays a role in the appearance of pinned regions. Figure S4d shows

the incompressible regions as a function of VZ and ryz, where ryz =Wy/Wz is the aspect ratio of the

nanowire section. When the distance between the SC shell and the opposite side is large (large ryz),

pinning is bigger. This is because the relative coverage of the wire by the SC shell decreases and so

does its attractive contribution.

Finally, if we consider perfect metallic screening by the SC shell, i.e., εSC→ ∞, we can also study

the appearance of the pinned regions depending on the distance between the nanowire charge density

and the SC shell. In Figure 4e we study the phase diagram as a function of VZ and the position of the

charge density across the nanowire section, y/R, where R is the wire’s half width. In Figure 4f the

position is fixed to the center of the wire, but we vary the aspect ratio of the wire. In both cases we

observe that, as the Majorana wave functions approaches the SC, the screening effect increases and

the pinning disappears [5]. However, if the wave function separates from the SC shell, the pinning

survives. This may happen when the bottom gate attracts the charge density away from the SC or

when the wave function is more spread throughout the section of the wire, as for example for higher

sub-bands.
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(e) (f)

Figure S4: Phase diagrams indicating the parameter regions where the Majorana bound states are
pinned to zero-energy (in red). In the upper panels the phase diagram is calculated as a function of
Zeeman field and chemical potential for the non-interacting case (a) and interacting case (without
leads) with εSC = 100 (b). The central panels correspond both to the interacting case, but (c) con-
siders variations in the effective dielectric constant of the thin superconducting layer, εSC, whereas
(d) explores different aspect ratios of the nanowire’s section ryz = Wy/Wz, where Wy,z are the y and
z widths of the nanowire faces. In the lower panels we consider perfect screening by the SC shell,
εSC→∞, but we vary the distance between the transversal Majorana charge density and the SC shell.
In (e) y/R is the position of the Majorana wave function across the nanowire section. When y = 0
the charge density is at the center of the nanowire, whereas when y = R it is a the opposite face of
the SC. In (f) the wave function is fixed at the center of the nanowire section, but we vary its aspect
ratio. Here µ = 0.5meV and Wz = 100nm, as in the main text.
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