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Details on mathematical derivations



Derivation of frequency shift for dynamic-mode cantilever
sensors

The frequency shift ∆ω for a dynamic-mode cantilever sensor is generally given as:

∆ω =

√
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meff + ∆m
−

√
k

meff
, (S.1)

where k and meff are the cantilever’s spring constant and effective mass, respectively
and ∆k and ∆m denote small changes due to external interactions (force gradient or
mass addition).

For negligible mass change, i.e. ∆m = 0, the frequency shift in dependence of a force
gradient ∆k can be derived by applying the approximation [1]:

√
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2
+ 1 , ε << 1 (S.2)

for small ∆k to the first term in equation (S.1). This results in:

∆ω =

√
k
(
1 + ∆k

k

)
meff

−

√
k

meff
(S.3)

∆ω =

√
k

meff
·
√

1 +
∆k

k
−

√
k

meff
(S.4)

∆ω ≈

√
k

meff
·
(

∆k

2k
+ 1

)
−

√
k

meff
(S.5)

∆ω ≈

√
k

meff
· ∆k

2k
+

√
k

meff
−

√
k

meff
(S.6)

∆ω ≈ ω0 ·
∆k

2k
. (S.7)

For negligible ∆k, a similar expression can be found for the frequency shift in dependence 
on the mass change ∆m. In this case a Taylor series expansion is employed under the 
assumption that ∆m is small, i.e. at the point ∆m = 0. To do so, equation (S.1) is 
rewritten:

∆ω (∆m, 0) =
√
k · (meff + ∆m)−1/2 −

√
k

meff
. (S.8)

It is sufficient to consider only the first two terms (stationary and first derivative) of the
expansion:

S1



∆ω (∆m, 0) ≈ ∆ω(0) +
∂∆ω(0)

∂∆m
· (∆m− 0) (S.9)

∆ω (∆m, 0) ≈ 0− 1

2

√
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∆ω (∆m, 0) ≈ − ∆m

2meff
· ω0 . (S.12)

Effective properties of the coupled system in dependence on
eigenfrequency deviation

Resonance frequencies

The resonance frequencies of the coupled system can be expressed as a function of the
eigenfrequency deviation ∆ωeigen = (ω2 − ω1)/ω1:
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with

Ω = 1 + ∆ωeigen . (S.14)

In that case, the eigenfrequency of the bigger oscillator (1) is assumed to be fixed and only 
that of the nanocantilever is varied. Please note that this is just a different form of 
equation (11) from the main text.

Effective spring constants

Based on equation (S.13) and equations (15) and (16) from the main paper, the effective 
spring constants can also be expressed in dependence on the eigenfrequency deviation, 
leading to:
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with
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