Supporting Information

for

BN/Ag hybrid nanomaterials with petal-like surfaces

as catalysts and antibacterial agents

Konstantin L. Firestein ${ }^{1,2 *}$, Denis V. Leybo ${ }^{1}$, Alexander E. Steinman ${ }^{1}$, Andrey M. Kovalskii ${ }^{1}$, Andrei T. Matveev ${ }^{1}$, Anton M. Manakhov ${ }^{1}$, Irina V. Sukhorukova ${ }^{1}$, Pavel V. Slukin 3, Nadezda K. Fursova ${ }^{3}$, Sergey G. Ignatov ${ }^{3,4}$, Dmitri V. Golberg ${ }^{2,5}$ and Dmitry V. Shtansky ${ }^{1 *}$

Address: ${ }^{1}$ National University of Science and Technology "MISIS", Leninsky prospect 4, Moscow, 119049, Russian Federation, ${ }^{2}$ School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology (QUT), 2nd George st., Brisbane, QLD 4000, Australia, ${ }^{3}$ State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow Region 142279, Russian Federation, ${ }^{4}$ Moscow State University, Department of Geocryology, Moscow 119992, Russian Federation and ${ }^{5}$ World Premier International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Namiki 1, Ibaraki 3050044, Japan

Email: Konstantin L. Firestein - konstantin.faershteyn@qut.edu.au; Dmitry V. Shtansky shtansky@shs.misis.ru;

* Corresponding author

Evaluation of the specific surface area of Ag NPs, histograms of Ag NPs size distribution and TEM microphotograph of CVD BN/Ag hybrid nanomaterials

Figure S1: Histograms of the Ag NP size distribution for CVD BN/Ag hybrid nanomaterials (a) and UV BN/Ag hybrid nanomaterials (b).

Evaluation of the specific surface area of Ag NPs.
Considering that all silver NPs have a shape close to spherical the specific surface area of the Ag NPs could be calculated using the following equation:

$$
\begin{equation*}
S S A=\frac{S}{m}=\frac{S}{\rho \cdot V}=\frac{4 \pi R^{2}}{\rho \cdot 4 / 3 \pi R^{3}}=\frac{3}{\rho \cdot R} \tag{1}
\end{equation*}
$$

Where ρ is density of Ag ; and R is an average radius of Ag NPs.
The average radius can be estimated from TEM images using secant method. For this 5-7 random straight lines are drawn through the TEM micrograph, then sizes of NPs lying on each line are measured (Figure S2). This was repeated for 5 micrographs for each sample. The average radius was calculated as following:

$$
\begin{equation*}
R_{a v}=\frac{\sum_{n} R}{n} \tag{1}
\end{equation*}
$$

The calculated average radius of Ag NPs was 7 nm for CVD BN/Ag hybrid nanomaterials and 11 nm for UV BN/Ag hybrid nanomaterials. Specific surface areas of the Ag NPs were respectively $4.3 \times$ $10^{5} \mathrm{~cm}^{2} / \mathrm{g}$ and $2.7 \times 10^{5} \mathrm{~cm}^{2} / \mathrm{g}$.

Figure S2: TEM microphotograph of CVD BN/Ag hybrid nanomaterials with randomly drawn straight lines.

