Supporting Information

for

Facile synthesis of a ZnO–BiOI p–n nano-heterojunction with excellent visible-light photocatalytic activity

Mengyuan Zhang¹, Jiaqian Qin^{2,3*}, Pengfei Yu¹, Bing Zhang¹, Mingzhen Ma¹,

Xinyu Zhang^{1,*}, and Riping Liu¹

Address: ¹State Key Laboratory of Metastable Materials Science and

Technology, Yanshan University, Qinhuangdao 066004, P. R. China,

²Metallurgy and Materials Science Research Institute, Chulalongkorn

University, Bangkok 10330, Thailand, and ³Research Unit of Advanced

Materials for Energy Storage, Chulalongkorn University, Bangkok, Thailand

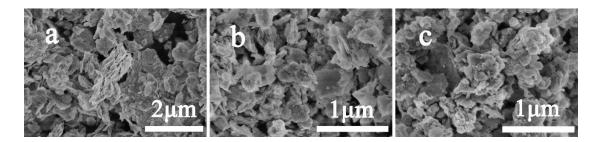
Email: Jiaqian Qin - jiaqian.q@chula.ac.th; Xinyu Zhang -

xyzhang@ysu.edu.cn

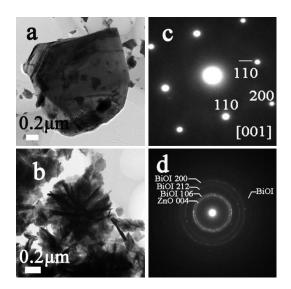
*Corresponding Author

Additional experimental information

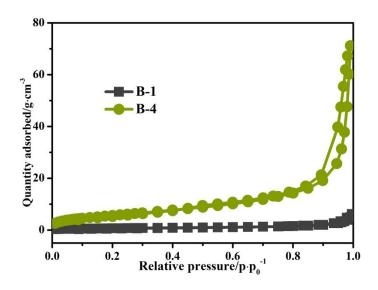
 Table S1: Comparison of ZnO/TiO2-BiOI composites prepared by different


methods

Samples	Synthetic method	Testing method	Test result	Ref.
ZnO-BiOI	Solution method	Photocatalytic	99.3% of	This
nanoheterojunction	followed by calcination.	degradation of RhB	RhB was report	
		solution under 300 W	degraded	
		Xe lamp with a 420 nm	after 100 min	
		cutoff filter.	irradiation.	
TiO2-BiOI	Soft chemical method	Photocatalytic	95% of MO	[1]
heterostructure		degradation of MO	was	
		solution under 500 W	degraded	
		halogen-tungsten lamp	after 2h	
		with a 420 nm cutoff	irradiation.	
		filter.		
ZnO-BiOI	Chemical bath method	Photocatalytic	78% of MO	[2]
heterostructure		degradation of MO	was	
		solution under 500W	degraded	
		halogen-tungsten lamp	after 4h	
		with a 420 nm cutoff	irradiation.	
		filter.		
BiOBr-BiOl/ZnO	Spine-coating	Photocurrent under the	4.8 mA/cm ²	[3]
nanowires		300 W Xe lamp with a		
heterostructure		420 nm filter.		
BiOI nanoplate- ZnO	Electrodeposition	Photoelecrocatalytic	93.66% of	[4]
nanorod p-n	followed by	degradation of CR	CR was	
heterojunction	solvolthermal process	under 300 W Xe lamp	degraded	
		with a 420 nm filter.	after 2 h	
			irradiation.	
ZnO embedded into	Solvolthermal method	Photodegradation of	37.2% of the	[5]
BiOI hybrid	followed by	RhB under the	RhB was	
nanoflakes	precipitation-deposition	irradiation of 300 W Xe	degraded	
	in combination with	lamp with a 420 nm	after 5 min	
	calcination.	filter.	irradiation.	
BiOI loaded ZnO	Solvolthermal method	Photodegradation of	99.9% of	[6]
nanorods	followed by	phenol under the	penol was	
composites	precipitation-deposition	irradiation of 500 W Xe	degraded	
		lamp without filter.	after 2 h	
			irradiation.	


Table S2: The average crystal size estimated by Scherrer formula and the

specific surface area of selected samples.


Samples	Crystal size(nm)	Specific surface area (cm ² /g)
B-1	-	5.23
B-2	31.25	-
B-3	14.8165	-
B-4	14.2949	20.83
B-5	12.5145	-
B-6	-	16

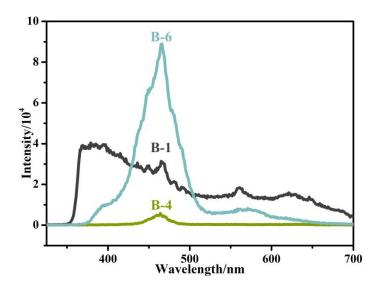

Figure S1: SEM image of a. B-2 (Bi/Zn=1/1), b. B-3 (Bi/Zn=1:2) and c. B-5 (Bi/Zn=1/4). From figure S1 a and b, it is obviously seen that the thickness and size of the particles from B-2 and B-3 samples diminish with the increase of the concentration of ZnO. When the Bi/Zn molar ratio reaches to 1/4, the assembled ZnO nano particles displace of the plate-like BiOI as the major shape of the B-5 sample.

Figure S2: The TEM images: a. pure BiOI, b. B-3 sample and their SAED patterns: c. pure BiOI, d. B-3 sample. The morphology of the samples highly agree with the results of the SEM images. The crystallinity natures of B-1 and B-3 are each revealed by figure S2 c and d, which represent single and poly crystal feature respectively.

Figure S3: N₂ adsorption-desorption isotherms of pure BiOI and B-4 sample with Bi/Zn molar ratio=1/3. The B-4's shape corresponds to a type IV isotherm, with a loop shape of H3, demonstrating the pores in B-4 are mainly made up of slit-like cracks.

Figure S4: Photoluminescence spectra of B-1, B-4 and B-6 samples. The PL spectrum of B-4 has the lowest intensity comparing with the pure BiOI (B-1) and ZnO(B-6), illustrating the highest photo-induced charge separation efficiency.

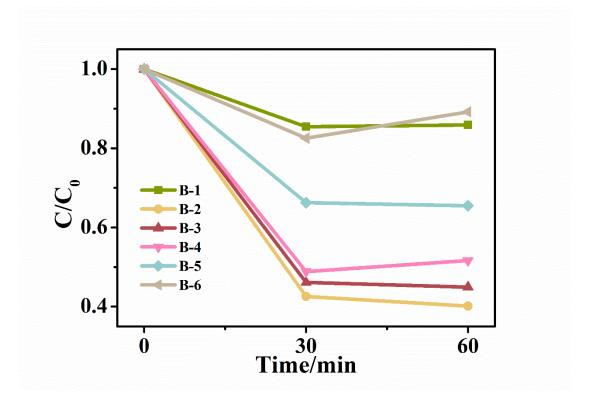


Figure S5: Adsorption desorption equilibrium of different samples in the dark.

References

1 Zhang X., Zhang L. Z., Xie T. F., Wang D. J. *J. Phys. Chem. C.* **2009**,113, 7371-8.

Jiang J., Zhang X., Sun P. B., Zhang L. Z. J. Phys. Chem. C. 2011,115,
20555-64.

3 Yu Y. X., Ouyang W. X., Zhang W. D. *J. Solid State Electrochem.* **2014**,18, 1743-50.

4 Kuang P. Y., Ran J. R., Liu Z. Q., Wang H. J., Li N., Su Y. Z., et al. *Chem*– *Eur J.* **2015**, 21, 15360-8.

5 Tong Y. H., Zheng C., Lang W. J., Wu F., Wu T., Luo W. Q., et al. *Mater Des*.
2017, 122, 90-101.

6 Jiang J. J., Wang H., Chen X. D., Li S., Xie T. F., Wang D. J., et al. *J. Colloid Intersurface Sci.* **2017**, 494, 130-8.