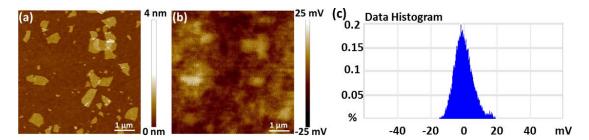
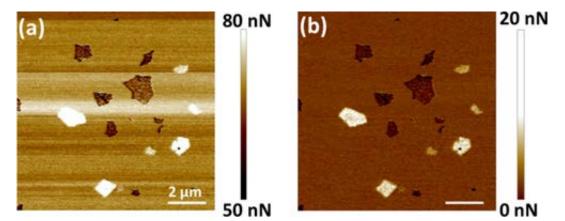
Supporting Information

for

Nanoscale mapping of dielectric properties based on surface adhesion force measurements


Ying Wang¹, Yue Shen², Xingya Wang^{1,3}, Zhiwei Shen^{1,3}, Bin Li¹, Jun Hu¹ and Yi Zhang^{*1}

Address: ¹Key Laboratory of Interfacial Physics and Technology and Laboratory of Physical Biology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; ²Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, China and ³University of Chinese Academy of Sciences, Beijing 100049, China


Email: Yi Zhang* - zhangyi@sinap.ac.cn

* Corresponding author

Additional experimental data

Figure S1: The contact potential difference between the tip and the sample. (a) Height image of GO/RGO hybrid sample in KPFM mode. (b) The corresponding surface potential image to (a). (c) The distribution of surface potential in (b). The measured contact potential difference between the AFM tip and GO/RGO in KPFM mode is between -16 mV and 19 mV.

Figure S2: System drift of the raw adhesion image. (a) Raw adhesion image of hybrid GO and rGO sample. (b) Adhesion image after first-order flatten correction of (a).