Search results

Search for "Lorentz transmission electron microscopy" in Full Text gives 2 result(s) in Beilstein Journal of Nanotechnology.

TEM sample preparation of lithographically patterned permalloy nanostructures on silicon nitride membranes

  • Joshua Williams,
  • Michael I. Faley,
  • Joseph Vimal Vas,
  • Peng-Han Lu and
  • Rafal E. Dunin-Borkowski

Beilstein J. Nanotechnol. 2024, 15, 1–12, doi:10.3762/bjnano.15.1

Graphical Abstract
  • Abstract We have prepared ferromagnetic nanostructures intended for the investigation of high-frequency magnetization dynamics in permalloy (Py) nanodisks using Lorentz transmission electron microscopy (LTEM) and electron holography. Py nanodisks were fabricated on thin silicon nitride (SiN) membranes
  • . Finally, we observed the vortex dynamics of the Py nanodisk under magnetic fields using LTEM and off-axis electron holography. A correlation between preparation methods and the properties of the Py nanostructures was made. Keywords: electron holography; Lorentz transmission electron microscopy; magnetic
  • configuration occurs only under the right diameter/thickness ratio, otherwise either a single or multiple magnetic domains will appear. After Py nanodots of various sizes were fabricated, we used Lorentz transmission electron microscopy (LTEM) and off-axis electron holography to study their magnetic domain
PDF
Album
Supp Info
Full Research Paper
Published 02 Jan 2024

Magnetic characterization of cobalt nanowires and square nanorings fabricated by focused electron beam induced deposition

  • Federico Venturi,
  • Gian Carlo Gazzadi,
  • Amir H. Tavabi,
  • Alberto Rota,
  • Rafal E. Dunin-Borkowski and
  • Stefano Frabboni

Beilstein J. Nanotechnol. 2018, 9, 1040–1049, doi:10.3762/bjnano.9.97

Graphical Abstract
  • nanowires (NWs) and square nanorings, which were deposited by focused electron beam induced deposition (FEBID) of a Co carbonyl precursor, are studied using off-axis electron holography (EH), Lorentz transmission electron microscopy (L-TEM) and magnetic force microscopy (MFM). EH shows that NWs deposited
  • orientation, while magnetostatic interactions between different sides give rise to different possible magnetization states [18]. Extensive work has previously been performed on Co nanostructures using magnetic force microscopy (MFM) [19][20], Lorentz-transmission electron microscopy (L-TEM) [21] and electron
PDF
Album
Full Research Paper
Published 03 Apr 2018
Other Beilstein-Institut Open Science Activities