Search results

Search for "hole transport material" in Full Text gives 7 result(s) in Beilstein Journal of Nanotechnology.

Semitransparent Sb2S3 thin film solar cells by ultrasonic spray pyrolysis for use in solar windows

  • Jako S. Eensalu,
  • Atanas Katerski,
  • Erki Kärber,
  • Lothar Weinhardt,
  • Monika Blum,
  • Clemens Heske,
  • Wanli Yang,
  • Ilona Oja Acik and
  • Malle Krunks

Beilstein J. Nanotechnol. 2019, 10, 2396–2409, doi:10.3762/bjnano.10.230

Graphical Abstract
  • VOC of about 700 mV, but virtually no JSC, producing PCE <0.1%. All solar cells henceforth were based on annealed Sb2S3 thin films. P3HT, as the hole transport material (HTM), was applied by immersing samples into a room-temperature solution of regioregular P3HT (2% w/w) dissolved in chlorobenzene
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2019

Widening of the electroactivity potential range by composite formation – capacitive properties of TiO2/BiVO4/PEDOT:PSS electrodes in contact with an aqueous electrolyte

  • Konrad Trzciński,
  • Mariusz Szkoda,
  • Andrzej P. Nowak,
  • Marcin Łapiński and
  • Anna Lisowska-Oleksiak

Beilstein J. Nanotechnol. 2019, 10, 483–493, doi:10.3762/bjnano.10.49

Graphical Abstract
  • Ti/TiO2:H/BiVO4:H electrode material could be further covered by conducting polymer prepared via electrodeposition. Beside many possible applications of conducting polymers like hole-transport material [63], electrochromic layers [64], electrochemical sensors [65] and gas sensors [66], a conducting
PDF
Album
Full Research Paper
Published 15 Feb 2019

Uniform Sb2S3 optical coatings by chemical spray method

  • Jako S. Eensalu,
  • Atanas Katerski,
  • Erki Kärber,
  • Ilona Oja Acik,
  • Arvo Mere and
  • Malle Krunks

Beilstein J. Nanotechnol. 2019, 10, 198–210, doi:10.3762/bjnano.10.18

Graphical Abstract
  • (structured) window layer, Sb2S3 absorber layer, and hole transport material layer, and their respective interfaces, is a tremendous undertaking [4]. Attention has surged toward planar heterojunction Sb2S3 solar cells due to their simpler structure, less intricate production, and enhanced repeatability vs
PDF
Album
Supp Info
Full Research Paper
Published 15 Jan 2019

Lead-free hybrid perovskites for photovoltaics

  • Oleksandr Stroyuk

Beilstein J. Nanotechnol. 2018, 9, 2209–2235, doi:10.3762/bjnano.9.207

Graphical Abstract
  • corresponding CB level (Figure 3b). This fact hints at the importance of the selection of an appropriate hole transport material for each particular HP composition to realize the potential of such materials to a full extent. The introduction of 10% Sn into CsPbIBr2 HP results in a bandgap narrowing from 1.90 to
PDF
Album
Review
Published 21 Aug 2018

Spin-coated planar Sb2S3 hybrid solar cells approaching 5% efficiency

  • Pascal Kaienburg,
  • Benjamin Klingebiel and
  • Thomas Kirchartz

Beilstein J. Nanotechnol. 2018, 9, 2114–2124, doi:10.3762/bjnano.9.200

Graphical Abstract
  • conditions, the role of the polymeric hole transport material is discussed. The efficiency of our best solar cells exceeds previous reports for each processing route, and our champion device displays one of the highest efficiencies reported for planar antimony sulfide solar cells. Keywords: antimony sulfide
  • ; hole transport material; solar cell; Introduction Antimony sulfide (Sb2S3) is a promising high band gap light absorber for solar cells [1][2][3][4][5]. The record efficiency of 7.5% [6] is comparable to that of other less investigated materials, such as the best lead-free perovskites [7], Cu2O [8] and
  • thin absorber (ETA) architecture, which is similar to that of dye-sensitized solar cells [21]. A thin absorber layer of around 10 nm [22] is deposited on a mesoporous TiO2 scaffold and the pores are subsequently filled with a hole transport material (HTM). Progress in terms of device efficiency can be
PDF
Album
Supp Info
Full Research Paper
Published 08 Aug 2018

Know your full potential: Quantitative Kelvin probe force microscopy on nanoscale electrical devices

  • Amelie Axt,
  • Ilka M. Hermes,
  • Victor W. Bergmann,
  • Niklas Tausendpfund and
  • Stefan A. L. Weber

Beilstein J. Nanotechnol. 2018, 9, 1809–1819, doi:10.3762/bjnano.9.172

Graphical Abstract
  • compact MAPI capping layer, the hole transport material spiro-OMETAD and a gold electrode. Prior to the measurement the cross section of the solar cell was polished with a focused ion beam (FIB) to minimize topographic crosstalk. The CPD line profiles in a) were extracted from double side band frequency
PDF
Album
Supp Info
Full Research Paper
Published 15 Jun 2018

Charge injection and transport properties of an organic light-emitting diode

  • Peter Juhasz,
  • Juraj Nevrela,
  • Michal Micjan,
  • Miroslav Novota,
  • Jan Uhrik,
  • Lubica Stuchlikova,
  • Jan Jakabovic,
  • Ladislav Harmatha and
  • Martin Weis

Beilstein J. Nanotechnol. 2016, 7, 47–52, doi:10.3762/bjnano.7.5

Graphical Abstract
  • and deionized water and then treated by oxygen plasma to remove organic residues. Prior to the organic material deposition the substrates were heated up to 200 °C during 30 min in vacuum better than 10−5 Pa. Devices were formed by sequential thermal evaporation of hole transport material α-NPD (Sigma
PDF
Album
Full Research Paper
Published 14 Jan 2016
Other Beilstein-Institut Open Science Activities