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Cyclic annulation involving diaryliodonium salts is an efficient tool for the construction of two or more chemical bonds in a one-pot

process. Ortho-functionalized diaryliodonium salts have showcased distinct reactivity in the exploration of benzocyclization or

arylocyclization. With this strategy of ortho-ester-substituted diaryliodonium salts, herein, we utilized a copper catalyst to activate

the C-I bond of diaryliodonium salts in the generation of aryl radicals, thus resulting in an annulation reaction with naphthols and

substituted phenols. This approach yielded a diverse array of 3,4-benzocoumarin derivatives bearing various substituents.

Introduction

Diaryliodonium salts as electrophilic reagents have attracted
significant attention in the field of organic synthesis owing to
their efficiency and selectivity [1-7]. Particularly, they have
been employed in benzocyclization and arylocyclization reac-
tions, enabling intramolecular cyclization by forming aromatic
or heterocyclic rings as a part of cyclic structures [8]. In these

reactions, the dual activation of a C-I bond and vicinal C-H

bonds/functional groups features a distinct advantage, facili-
tating the formation of two or more chemical bonds in a step-
economic manner [9-13]. In a prior study, we reported a palla-
dium-catalyzed efficient activation of both C-I bond and the
adjacent C—H bond of diaryliodonium salts in the formation of
4,5-benzocoumarin derivatives, expanding the benzocoumarin

family (Scheme 1b) [14]. Recently, ortho-functionalized
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Scheme 1: Arylation reactions of aromatic compounds and reaction patterns of ortho-functionalized diaryliodonium salts.

diaryliodonium salts, due to their coordinating and electrophilic
effects, have exhibited unique reactivity and chemoselectivity
[15]. As such, a wide range of functional groups including the
trimethylsilyl group, boronic acid, trifluoroborate moiety, tri-
fluoromethanesulfonate, aryl sulfonamides, and heterocycles,
have been incorporated into the ortho-position of diaryliodo-
nium structures [16-21]. Ortho-trimethylsilyl or boronic acid-
substituted diaryliodonium salts can serve as aryne precursors.
Ortho-trifluoroborate-substituted diaryliodonium salts furnished
iodonium zwitterions as bifunctional reagents [22-25]. Addi-
tionally, ortho-trifluoromethanesulfonate, N-sulfonyl, or tosyl-
methylene-substituted diaryliodonium salts can undergo intra-
molecular aryl migrations [26-28]. More recently, we explored
the reactivity of ortho-functionalized diaryliodonium salts con-

taining electron-withdrawing groups (EWGs) such as fluorine

and nitro groups [29,30]. These ortho-substituted diaryliodo-
nium salts undergo selective benzocyclizations and arylocy-
clizations with aromatic acids, leading to 3,4-benzocoumarin
skeletons in the presence of palladium catalysts (Scheme 1b).
Furthermore, Olofsson and colleagues described an unprece-
dented reaction pathway using ortho-fluoro-substituted
diaryliodonium salts bearing strong electron-withdrawing
groups, leading to novel diarylations of N-, O-, and S-nucleo-
philes [31-33]. Building on our great interest in ortho-functio-
nalized diaryliodonium salts and their dual activation capabili-
ties, we sought to incorporate carboxylic ester groups into the
structures of ortho-substituted diaryliodonium salts to explore
their properties and reactivity. Our previous investigations
demonstrated the ability of diaryliodonium salts for selective

mono-arylation of 2-naphthols [34]. In this context, we embark
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on a strategy to modify the neighbouring position of the
diaryliodonium salt with an ester group, presenting a novel
copper-catalysed regioselective arylocyclization of naphthols
and substituted phenols. This method represents an efficient ap-
proach to access 3,4-benzocoumarin derivatives (Scheme 1c).

Results and Discussion

To start the study, we used 2-naphthol (1a) and 1.1 equivalents
of ortho-methyl formate-substituted diaryliodonium salt 2a as
template substrates. The reaction was performed in the pres-
ence of 10 mol % Cu(OTf); and 1.0 equivalent of K,CO3 in
DCE at a temperature of 80 °C. To our delight, the reaction
afforded 3,4-benzocoumarin 3aa in a 27% yield (Table 1, entry
1). The structure of 3aa was confirmed through NMR spectros-
copy and mass spectra analysis. Subsequently, we started to
screen various bases such as NayCOj3, CspCO3, KOH, NaO¢-Bu,
LiHMDS, and DMAP (Table 1, entries 2—7). Fortunately, it was
found that the reaction yield was increased to 50% in the

Table 1: Optimization of reaction conditions.2
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absence of any base (Table 1, entry 8). Further investigations
for assessing the influence of various solvents including
dimethyl sulfoxide (DMSO), N,N-dimethylformamide (DMF),
toluene, acetic acid (AcOH) and water (Table 1, entries 9—13)
were carried out. However, polar solvents such as AcOH and
H,O were proved to be unsuitable for this reaction. For cata-
lysts, we found that Cu(OAc), gave the best results (Table 1,
entries 15-18). Finally, the reaction temperature and time were
optimized, 3aa was produced in 61% yield at a temperature of
80 °C after 3 hours (Table 1, entry 15).

With the optimized reaction conditions in hand, we started to
explore the substrate scope of the cyclization to construct a
variety of 3,4-benzocoumarin derivatives. Our investigations
commenced with 2-naphthol (1), and the results are presented in
Table 2. Various substituted naphthols with a broad range of
substituents on the naphthalene unit were well tolerated in the
reaction, affording the corresponding products 3aa—aq in gener-

(0]
ED/OH . (i[COZMe catalyst (10 mol %) o
= = I/Mes base, solvent, OO
6-” temp, time
1a 2a 3aa

Entry Solvent Base Catalyst 3aa (%)P
1 DCE KoCO3 Cu(OTf), 27
2 DCE Na2003 CU(OTf)g 25
3 DCE Cs,C03 Cu(OTH), 16
4 DCE KOH Cu(OTf), 24
5 DCE DMAP Cu(OTf), 26
6 DCE NaOt-Bu Cu(OTH), 35
7 DCE LIHMDS Cu(OTH), 30
8 DCE - Cu(OTH), 50
9 DMSO - Cu(OTH), 45¢ (40)d
10 DMF - Cu(OTH), 23
11 toluene - Cu(OTf)2 10
12 AcOH - Cu(OTf)z 0
13 Ho.0 - Cu(OTf)z 0
14e DCE - Cu(OTf)z 48
15 DCE - Cu(OAc)z 61
16 DCE - Pd(OAC)s 22
17 DCE - PdCl» 40
18 DCE - AgOAc 20

@Reaction conditions: 1a (0.3 mmol, 1 equiv), 2a (0.33 mmol, 1.1 equiv), base (0.3 mmol; 1 equiv), catalyst (10 mol %), solvent (2 mL), 80 °C,
3 hours. Plsolated yields were obtained after purification by column chromatography. The reaction temperature was 110 °C. 9The reaction tempera-

ture was 130 °C. ®The reaction was quenched after 12 hours.
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ally moderate to good yields of 22-83% (Table 2, entries 1-17).
These substituents included halogen (Br), methyl, phenyl, alde-
hyde, ester, and methoxy groups, all of which were compatible
with the reaction conditions. Notably, compounds 3ab, 3ah,
3aj, 3am and 3ap bearing bromine are very useful modules for
the synthesis of functional materials via cross-coupling reac-
tions. Next, we extended our investigation to 1-naphthol in this
reaction, and found that the arylation of 1-naphthol was
achieved selectively at the C-2 position. The cascade cycliza-
tion resulted in the corresponding products 3an and 3ao in
yields of 49% and 40%, respectively (Table 2, entries 14 and
15). When 5,6,7,8-tetrahydro-2-naphthol was subjected to the
reaction, we obtained products 3ar and 3as as a mixture (40%
and 10% yield, respectively, Table 2, entry 18). However, when

naphthol bearing a strong electron-withdrawing group (such as

Beilstein J. Org. Chem. 2024, 20, 841-851.

a nitro group) in the para position was reacted, the correspond-
ing product could not be obtained, but instead the O-arylated
product 3at was obtained (Table 2, entry 19). Apart from
naphthol, we also tested substituted phenols under the standard
conditions. The corresponding products of 3au and 3av were
produced in 34% and 39% yields, respectively, in which
methoxy and tert-butyl groups were located in the para
position to the hydroxy group (Table 2, entries 20 and 21). In
the case of 3al, the mono-arylation of naphthol generated 3al’
in 20% isolated yield, which is the reason for the low yield of
3al.

We subsequently turned our attention to explore the effect of
structural diversity of the ortho-ester-substituted diaryliodo-

nium salts. Firstly, a family of substituted diaryliodonium salts

Table 2: Scope of naphthols and phenols for the synthesis of 3,4-benzocoumarins.2p.

B

N OH COzMe  cu(OAc), (10 mol %) )
L + _Mes DCE 80°C,3h g
! N
1 2a OTf 3
Entry 1 Product Yield (%)P
N (s
1 O O o} 61
3aa
Br OH O ©
2 Br [ l o) 63
3ab
N Ol o
s oY .
3ac
MeO OH ‘ ©
4 MeO [ ‘ o) 77
3ad

844



Table 2: Scope of naphthols and phenols for the synthesis of 3,4-benzocoumarins.2P. (continued)
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Table 2: Scope of naphthols and phenols for the synthesis of 3,4-benzocoumarins.2P. (continued)
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Table 2: Scope of naphthols and phenols for the synthesis of 3,4-benzocoumarins.2P. (continued)

OH | -
¥ O
20 O 34
OMe MeO
3au
OH
(o
21 O (0] 39
t-Bu t-Bu
3av

aReaction conditions: 1 (0.3 mmol, 1 equiv), 2a (0.33 mmol, 1.1 equiv), Cu(OAc), (10 mol %), DCE (2 mL), 80 °C, 3 hours. Plsolated yields were ob-
tained after purification with column chromatography. Mes = 2,4,6-trimethylphenyl, OTf = trifluoromethansulfonate.

were synthesized in a one-pot procedure. These ortho-substi-
tuted diaryliodonium salts were isolated as stable solids, whose
structures were fully characterized by NMR spectroscopy. As

shown in Table 3, we utilized 2-naphthol and 1-naphthol as
template substrates to react with various unsymmetrical 2-ester-

substituted diaryliodonium salts. Remarkably, iodonium salts 2

Table 3: Scope of ortho-ester-substituted diaryliodonium salts.?

DCE, 80°C,3h

=
OH+ N COMe ¢ 0Ac), (10 mol %) o
NN Mes OO
2 I

1a oTf

Entry 2 Product Yield (%)°

0 55
|
90
2b

3aa
CO;Me O 0
2 I/Mes (o) 32
9
2c 3ca
Cl

o &

3 cl I/Mes o 50
cC

2d
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Table 3: Scope of ortho-ester-substituted diaryliodonium salts.2 (continued)
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Table 3: Scope of ortho-ester-substituted diaryliodonium salts.2 (continued)

Cl CO,Me

_Mes

11 |

OTf
2k

2

Cl\C[COZMe
190 I/Mes
|
OTf
2k
Br\©iCOZMe
13 I/Mes
|
OTf
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14 I/Mes
oTf
2m
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O
37
o
3ka
O
Cl
(@)
0 ;
3kb
Br
(o
35
908
3la
F
o,
fe) 50
3ma

aReaction conditions: 1 (0.3 mmol, 1 equiv), 2 (0.33 mmol, 1.1 equiv), Cu(OAc)» (10 mol %), DCE (2 mL), 80 °C, 3 hours. Plsolated yields were ob-
tained after purification with column chromatography. ¢1-Naphthol was used instead of 2-naphthol. Mes = 2,4,6-trimethylphenyl, OTf = trifluoro-

methansulfonate.

proved to be versatile in this reaction, regardless of the elec-
tronic nature and position of the substituents. The desired 3,4-
benzocoumarin products 3ba—ma were obtained in yields of
21-59%. Notably, substituents such as halogens (F, Cl, and Br),
methyl, methoxy, and trifluoromethyl groups at the ortho-,
meta-, or para-positions to the ester group were all well-toler-
ated (Table 3).

To gain further insights into the reaction mechanism, we con-
ducted control experiments. Given the utility of diaryliodonium
salts in radical chemistry, we introduced 2 equivalents of
2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) or 2 equiva-
lents of butylated hydroxytoluene (BHT) into the template reac-
tion. Remarkably, we observed that the desired product was not
formed, suggesting a radical pathway. Subsequently, we investi-
gated the bond-formation sequence in the benzocyclization
reaction. A possible intermediate of 3al’ was prepared and
tested in the reaction under the standard conditions, however,

product 3aa was not obtained.

Based on the literature known results and the experimental evi-
dences [35,36], we proposed a plausible reaction mechanism
(Scheme 2b). The reaction started with the formation of radical
intermediate A from diaryliodonium salt 2a. Naphthol 1a forms
intermediate B with A after participation with the Cu(Il) cata-
lyst. Intermediate B generates C by radical substitution. A final
intramolecular transesterification yields the benzocoumarin

product 3aa.

Conclusion

In summary, we have employed ortho-ester-substituted
diaryliodonium salts in a cascade cyclization, the cyclization
features a copper-catalyzed activation strategy involving the
cleavage of the C-I bond and esterification. The resulting
cascade of selective arylation/intramolecular cyclization facili-
tated the synthesis of 3,4-benzocoumarin derivatives. The
protocol enables the efficient formation of two chemical bonds
in one pot, representing a valuable tool for the synthesis of

polycyclic benzocoumarins. Our ongoing research endeavours
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(a) control experiments

2.0 equiv TEMPO \N/ O
- 75
OH CO,Me standard conditions O
+ —
Q) ©i _Mes = °
! 20equivBHT  \/ L
2 OoTf — 7N
1 a standard conditions
COoM
@) 2\e O 0
O .
\@ standard conditions \/ o
MU e
3al' MeO,C

(b) proposed reaction mechanism

OH ° CO,Me o CO2Me
(jij/ Cu'l catalyst X‘Cu& cu' |
¥ > e ° % I/Mes
X 0 '
1a | A OTf
P 2a

L (methyl benzoate was detected by LC-MS spectra)
B
radical substitution
cross-coupling
CO,Me

o
O transesterification

—— O
o >

C (detected by LC—MS spectra)

3aa

Scheme 2: Mechanism study. Standard conditions: 1 (0.3 mmol, 1 equiv), 2 (0.33 mmol, 1.1 equiv), Cu(OAc)> (10 mol %), DCE (2 mL), 80 °C,

3 hours. TEMPO = 2,2,6,6-tetramethylpiperidine-1-oxyl; BHT = butylated hydroxytoluene.

are dedicated to explore the detailed reaction mechanism with
the ultimate aim of broadening the scope and applicability of
this approach.
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