Supporting Information

for

Pyridylidene ligand facilitates gold-catalyzed

oxidative $\mathrm{C}-\mathrm{H}$ arylation of heterocycles

Kazuhiro Hata ${ }^{1}$, Hideto Ito 1, Yasutomo Segawa ${ }^{* 1,2}$ and Kenichiro Itami* ${ }^{1,2,3}$
Address: 1Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan, 2JST, ERATO, Itami Molecular Nanocarbon Project, Nagoya University, Chikusa, Nagoya 464-8602, Japan and 3Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
Email: Yasutomo Segawa - ysegawa@nagoya-u.jp; Kenichiro Itami -itami@chem.nagoya-u.ac.jp
* Corresponding author
\section*{Experimental procedures, spectra of new compounds, CIF data, and details of the computational study}

Table of Contents

General S2
Preparation of (triarylpyridylidene)gold chloride S3
Oxidation of (triarylpyridylidene)gold chloride S3
In situ observation and isolation of (triarylpyridylidene)gold trichloride S4
General procedure for triarylpyridylidene-gold-catalyzed oxidative
C-H arylation of heteroarenes with arylsilanes S4
General procedure for GC analysis of reaction profiles of each reaction component S5
Characterization of new compounds S6
X-ray crystallography S11
Computational study S13
References S16
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra S17

General

Unless otherwise noted, all materials including dry solvents were purchased from commercial suppliers and used without further purification. All reactions were performed using standard vacuum-line, Schlenk techniques, and screw cap tube. Work-up and purification procedures were carried out with reagent-grade solvents under air.

Analytical thin-layer chromatography (TLC) was carried out on Merck silica gel $60 \mathrm{~F}_{254}$ plates; detection by UV or dipping into a solution of $\mathrm{Ce}\left(\mathrm{SO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~g})$, phosphomolybdic acid hydrate (25 g), conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(60 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.94 \mathrm{~L})$ or $\mathrm{NaHCO}_{3}(5.0 \mathrm{~g}), \mathrm{KMnO}_{4}(1.5 \mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(0.20 \mathrm{~L})$ followed by heating. Flash chromatography (FC) was carried out on Merck or KANTO silica gel $60(40-100 \mu \mathrm{~m})$ with an air pressure of about 1.1-1.5 bar. Preparative thin-layer chromatography (PTLC) was performed using Wako-gel ${ }^{\circledR}$ B5-F silica coated plates $(0.75 \mathrm{~mm})$ prepared in our laboratory. High-resolution mass spectra (HRMS) were measured on a Thermo Fisher Exactive Plus spectrometer (ESI) and (APCI). Nuclear magnetic resonance (NMR) spectra were recorded on JEOL JNM-ECA-600 (${ }^{1} \mathrm{H}: ~ 600 \mathrm{MHz},{ }^{13} \mathrm{C}: 150 \mathrm{MHz}$). Chemical shifts for ${ }^{1} \mathrm{H}$ NMR are expressed in parts per million (ppm) relative to CHCl_{3} (δ $7.26 \mathrm{ppm})$. Chemical shifts for ${ }^{13} \mathrm{C}$ NMR are expressed in ppm relative to $\mathrm{CHCl}_{3}(\delta 77.0 \mathrm{ppm})$. Data are reported as follows: chemical shift, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{dd}=$ doublet of doublets, $\mathrm{dt}=$ doublet of triplets, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet), coupling constant (Hz), and integration.

Preparation of (triarylpyridylidene)gold chloride [$\mathrm{AuCl}(\mathrm{PyC})$]

Silver(I) oxide ($232 \mathrm{mg}, 1.0 \mathrm{mmol}$) was added into a reaction vessel filled with an 1,2-dichloroethane (5.0 mL) solution of 3,5-bis(2,6-dimethylphenyl)-1-mesityl-pyridinium triflate \cdot toluene ${ }^{51}$ ($648 \mathrm{mg}, 1.0 \mathrm{mmol}$) and tetrabutylammonium chloride hydrate $(1.4 \mathrm{~g}, 5.0$ mmol) under N_{2} atmosphere. The reaction mixture was stirred at room temperature in dark until the silver(I) oxide powder disappeared ($1-2 \mathrm{~h}$) before chloro(dimethylsulfide)gold(I) was added. Further stirring overnight afforded a yellow solution and a black solid. Addition of chloroform $(10 \mathrm{~mL})$ gave an insoluble white precipitation, and these solids were removed by Celite ${ }^{\circledR}$ filtration and the filtrate was concentrated under reduced pressure. The crude oily mixture was purified by column chromatography on silica gel with chloroform/methanol (20:1) as the eluents and the fractions were concentrated under reduced pressure. Reprecipitation from chloroform/toluene gave colorless microcrystals. Further purification was conducted by recrystallization from chloroform/toluene to produce $\mathrm{AuCl}(\mathrm{PyC}) \cdot$ toluene as white crystals (281 $\mathrm{mg}, 0.40 \mathrm{mmol}, 40 \%$ yield). Toluene in the crystal was removed by evaporation of chloroform solution. The characterization data for compound $\mathrm{AuCl}(\mathrm{PyC})$ corresponded to the reported values. ${ }^{51}$

Oxidation of (triarylpyridylidene)gold chloride

Oxidation of $\mathrm{AuCl}(\mathrm{PyC})$ was performed according to the literature. ${ }^{52}$ dichloro(phenyl) $-\lambda^{3}$-iodane ($55 \mathrm{mg}, 0.20 \mathrm{mmol}$) was added into the solution of $\mathrm{AuCl}(\mathrm{PyC})$ (128 $\mathrm{mg}, 0.200 \mathrm{mmol})$ in dichloromethane (2.0 mL) under N_{2} atmosphere. The reaction mixture was stirred at room temperature for 19 h and was filtered through a pad of Celite ${ }^{\circledR}$. The filtrate was poured into hexane and the resulting precipitate was collected by filtration to obtain pure $\mathrm{AuCl}_{3}(\mathrm{PyC})$ as a white solid ($140 \mathrm{mg}, 99 \%$). A colorless single crystal for X-ray diffraction analysis was obtained by recrystallization from nitrobenzene and pentane.

In situ observation and isolation of (triarylpyridylidene)gold trichloride

$\mathrm{AuCl}(\mathrm{PyC})(13 \mathrm{mg}, 20 \mu \mathrm{~mol})$, 5-fluoro-2-iodosobenzoic acids (5F-IBA) ($5.6 \mathrm{mg}, 20 \mu \mathrm{~mol}$) and (+)-10-camphorsulfonic acid (CSA) ($4.6 \mathrm{mg}, 20 \mu \mathrm{~mol}$) were placed in a screw NMR tube, and $\mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{OD}(10: 1,0.60 \mathrm{~mL})$ was added under N_{2} atmosphere. The tube was sealed with a cap equipped with a Teflon ${ }^{\circledR}$-coated silicon rubber septum, and heated at $65{ }^{\circ} \mathrm{C}$ for 30 min . After cooling to room temperature, lithium chloride ($8.4 \mathrm{mg}, 0.20 \mathrm{mmol}$) was added. Then 1,1,2,2-tetrachloroethane (an internal standard) was added and the NMR yield of $\mathrm{AuCl}_{3}(\mathrm{PyC})$ was estimated by ${ }^{1} \mathrm{H}$ NMR. The solvent was removed in vacuo, and the residue was dissolved in ethyl acetate, the organic layer was washed with saturated $\mathrm{NaHCO}_{3} \mathrm{aq}$, and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated in vacuo to afford a crude mixture. The crude mixture was further washed with $\mathrm{Et}_{2} \mathrm{O}$ to give pure $\mathrm{AuCl}_{3}(\mathrm{PyC})$ as white powder ($3.4 \mathrm{mg}, 24 \%$).

General procedure for triarylpyridylidene-gold-catalyzed oxidative $\mathbf{C}-\mathbf{H}$ arylation of heteroarenes with arylsilanes

Triarylpyridylidene-gold complex $\mathrm{AuCl}(\mathrm{PyC})(6.4 \mathrm{mg}, 10 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%)$, heteroarene (0.20 mmol), and aryl(trimethyl)silane (0.20 mmol), 2-iodosobenzoic acids (IBA) ($53 \mathrm{mg}, 0.20$ mmol), (+)-10-camphorsulfonic acid (CSA) ($47 \mathrm{mg}, 0.20 \mathrm{mmol}$) and a stirring bar were placed in a screw test tube, and dry chloroform/methanol ($1.0 \mathrm{~mL} / 0.10 \mathrm{~mL}$) was added under N_{2} atmosphere. The tube was sealed with a cap equipped with a Teflon ${ }^{\circledR}$-coated silicon rubber septum, and the mixture was stirred at $65{ }^{\circ} \mathrm{C}$ for $18-48 \mathrm{~h}$. The reaction was quenched by addition of excess saturated NaHCO_{3} aq, the aqueous layer was extracted with dichloromethane and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated, and concentrated under reduced pressure. The residue was purified by flash chromatography (FC) to afford the coupling product.

General procedure for GC analysis of reaction profiles of each reaction component

A gold complex [AuCl(ligand)] ($25 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%$), 5-methylisoxazole (1b) (42 mg, 0.50 mmol), (4-bromophenyl)(trimethyl)silane (2a) (115 mg, 0.50 mmol), 2-iodosobenzoic acids (IBA) (132 mg, 0.50 mmol), (+)-10-camphorsulfonic acid (CSA) ($116 \mathrm{mg}, 0.50 \mathrm{mmol}$), the internal standard (nonane, $50 \mu \mathrm{~L}$) and a stirring bar were placed in a Schlenk tube, and dry chloroform/methanol ($5.0 \mathrm{~mL} / 0.50 \mathrm{~mL}$) solution was added under N_{2} atmosphere. The tube was sealed with a glass stopper, and the mixture was stirred at $65^{\circ} \mathrm{C}$. A tiny portion of reaction mixture was taken with a capillary under N_{2} atmosphere, and its diluted solution was analyzed by GC.

Figure S: Time-yield/consumption profiles of 5-methylisozxazole (1b), (4-bromophenyl)(trimethyl)silane (2a), 4-(4-bromophenyl)-5-methylisoxazole (3ba) methyl 2-iodobenzoate (5) and 4,4’-dibromobiphenyl (4) with (a) $\mathrm{AuCl}(\mathrm{PyC})$, (b) $\mathrm{AuCl}\left(\mathrm{PPh}_{3}\right)$ and (c) $\mathrm{AuCl}(\mathrm{IPr})$. All yields were determined by GC analysis with n-nonane as an internal standard

Characterization of new compounds

[3,5-Bis(2,6-dimethylphenyl)-1-mesityl-pyridylidene]gold trichloride [$\mathrm{AuCl}_{3}(\mathrm{PyC})$]

${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 8.17(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{td}, J=$ 7.6, 2.7 Hz, 2H), 7.19 (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.16$ (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.07$ (s, 2H), 2.36 (s, 3H), $2.28(\mathrm{~s}, 12 \mathrm{H}), 2.15(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 162.5(\mathrm{CH}), 149.6\left(4^{\circ}\right), 146.6(\mathrm{CH})$, $144.7(\mathrm{CH}), 141.9\left(4^{\circ}\right), 141.5\left(4^{\circ}\right), 138.5\left(4^{\circ}\right), 136.4\left(4^{\circ}\right), 135.62\left(4^{\circ}\right), 135.58\left(4^{\circ}\right), 133.2\left(4^{\circ}\right)$, $132.2\left(4^{\circ}\right), 130.4(\mathrm{CH}), 129.9(\mathrm{CH}), 129.7(\mathrm{CH}), 128.32\left(4^{\circ}\right), 128.29(\mathrm{CH}), 22.1\left(\mathrm{CH}_{3}\right), 21.1$ $\left(\mathrm{CH}_{3}\right)$, $20.9\left(\mathrm{CH}_{3}\right), 19.3\left(\mathrm{CH}_{3}\right)$; HRMS (ESI+) calcd for $\mathrm{C}_{31} \mathrm{H}_{35} \mathrm{AuCl}_{2} \mathrm{NO}[\mathrm{M}-\mathrm{Cl}+\mathrm{MeOH}]^{+}: \mathrm{m} / \mathrm{z}$ 704.1756, found: 704.1722.

4-(4-Bromophenyl)isoxazole (3aa)

3aa was prepared according to the general procedure, employing
 isoxazole (1a) (14 mg, 0.20 mmol) and (4-bromophenyl)(trimethyl)silane (2a) (46 mg, 0.20 mmol) for 18 h . FC (hexane/ethyl acetate $=20: 1$ to $10: 1$) gave 3aa as a pale yellow solid ($6.1 \mathrm{mg}, 0.027 \mathrm{mmol}, 14 \%$).
${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 8.67(\mathrm{~s}, 1 \mathrm{H}), 8.53(\mathrm{~s}, 1 \mathrm{H}), 7.56-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.33(\mathrm{~m}$, 2H); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 153.5(\mathrm{CH}), 147.7(\mathrm{CH}), 132.3(\mathrm{CH}), 127.9(\mathrm{CH}), 127.5$ $\left(4^{\circ}\right), 122.0\left(4^{\circ}\right), 120.4\left(4^{\circ}\right)$; HRMS (ESI +) calcd for $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{BrNO}[\mathrm{M}+\mathrm{H}]^{+}: \mathrm{m} / \mathrm{z} 223.9706$, found: m/z 223.9695.

4-(4-Fluorophenyl)isoxazole (3ab)

3ab was prepared according to the general procedure, employing
 isoxazole (1a) (14 mg, 0.20 mmol) and (4-fluorophenyl)(trimethyl)silane (2b) (37 mg, 0.20 mmol) for 24 h . FC (pentane/diethylether $=10: 1$) gave 3ab as a pale yellow solid ($4.9 \mathrm{mg}, 0.030 \mathrm{mmol}, 15 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 8.64(\mathrm{~s}, 1 \mathrm{H}), 8.52(\mathrm{~s}, 1 \mathrm{H}), 7.46-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.10(\mathrm{~m}$, 2H); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 162.5\left(4^{\circ}, \mathrm{J}=247 \mathrm{~Hz}\right), 153.2(\mathrm{CH}), 147.9(\mathrm{CH}), 128.2$ $(\mathrm{CH}, J=8.6 \mathrm{~Hz}), 124.7\left(4^{\circ}, J=2.9 \mathrm{~Hz}\right), 120.5\left(4^{\circ}\right), 116.3(\mathrm{CH}, J=21 \mathrm{~Hz}) ;$ HRMS (ESI+) calcd for $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{FNO}[\mathrm{M}+\mathrm{H}]^{+}: m / z$ 164.0506, found: $m / z 164.0500$.

3ba was prepared according to the general procedure, employing
 5-methylisoxazole (1b) (17 mg, 0.20 mmol$)$ and (4-bromophenyl)(trimethyl)silane (2a) (46 mg, 0.20 mmol) for 24 h . FC (pentane/diethylether = 10:1) gave 3ba as a pale yellow oil (26 mg, 0.11 mmol, 55\%).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \quad$ G7884QRn(s,2H), $7726-7.23(\mathrm{~m}, 2 \mathrm{H}), 2.55(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 164.5\left(4^{\circ}\right), 149.8(\mathrm{CH}), 132.1(\mathrm{CH}), 129.0\left(4^{\circ}\right), 128.9$ $(\mathrm{CH}), 121.4\left(4^{\circ}\right), 115.5\left(4^{\circ}\right), 11.8\left(\mathrm{CH}_{3}\right)$; HRMS (ESI+) calcd for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{BrNO}[\mathrm{M}+\mathrm{H}]^{+}: \mathrm{m} / \mathrm{z}$ 237.9862, found: $m / z 237.9855$.

4-(4-Fluorophenyl)-5-methylisoxazole (3bb)

3bb was prepared according to the general procedure, employing
 5-methylisoxazole (1b) (17 mg, 0.20 mmol$)$ and (4-fluorophenyl)(trimethyl)silane (2b) (37 mg, 0.20 mmol) for 24 h . FC (pentane/diethylether $=10: 1$) gave $\mathbf{3 b b}$ as a yellow oil ($19 \mathrm{mg}, 0.11 \mathrm{mmol}$, 54\%).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 8.31(\mathrm{~s}, 1 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.10(\mathrm{~m}, 2 \mathrm{H}), 2.54(\mathrm{~s}$, 3H); ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 164.2\left(4^{\circ}\right), 162.1\left(4^{\circ}, \mathrm{J}=247 \mathrm{~Hz}\right), 150.0(\mathrm{CH}), 129.1(\mathrm{CH}$, $J=8.6 \mathrm{~Hz}), 126.1\left(4^{\circ}, J=2.9 \mathrm{~Hz}\right), 116.0(\mathrm{CH}, J=22 \mathrm{~Hz}), 115.6\left(4^{\circ}\right), 11.6\left(\mathrm{CH}_{3}\right) ;$ HRMS (ESI+) calcd for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{FNO}[\mathrm{M}+\mathrm{H}]^{+}: m / z$ 178.0663, found: $m / z 178.0658$.

3bc was prepared according to the general procedure, employing
 5-methylisoxazole (1b) (17 mg, $0.20 \quad \mathrm{mmol})$ and (4-trifuoromethylphenyl)(trimethyl)silane (2c) ($44 \mathrm{mg}, 0.20 \mathrm{mmol}$) for 48 h . FC (hexane/ethyl acetate $=50: 1$ to $10: 1$) gave $\mathbf{3 b c}$ as a colorless oil (15 mg , $0.066 \mathrm{mmol}, 33 \%)$.
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 8.39(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $2.60(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 165.2\left(4^{\circ}\right), 149.8(\mathrm{CH}), 133.8\left(4^{\circ}\right), 129.6\left(4^{\circ}, \mathrm{J}=\right.$ $33 \mathrm{~Hz}), 127.6(\mathrm{CH}), 126.0(\mathrm{CH}, J=4.4 \mathrm{~Hz}), 124.0\left(4^{\circ}, J=270 \mathrm{~Hz}\right), 115.4\left(4^{\circ}\right), 11.9\left(\mathrm{CH}_{3}\right)$; HRMS (ESI+) calcd for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: m / z 228.0631$, found: $m / z 228.0622$.

4-(3,5-Dibromo)-5-methylisoxazole (3bd)
3bd was prepared according to the general procedure, employing
 5-methylisoxazole (1b) (17 mg, $0.20 \quad \mathrm{mmol})$ and (3,5-dibromophenyl)(trimethyl)silane (2d) ($62 \mathrm{mg}, 0.20 \mathrm{mmol}$) for 48 h . FC (hexane/ethylacetate $=50: 1$ to $10: 1$) gave 3bd as a white solid $(8.3 \mathrm{mg}$, $0.026 \mathrm{mmol}, 13 \%)$.
${ }^{1}{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 8.33(\mathrm{~s}, 1 \mathrm{H}), 7.64(\mathrm{t}, \mathrm{J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H})$, 2.58 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 165.3$ (4$), 149.6(\mathrm{CH}), 133.6\left(4^{\circ}\right), 133.0(\mathrm{CH})$, $129.1(\mathrm{CH}), 123.5\left(4^{\circ}\right)$, $114.2\left(4^{\circ}\right)$, $11.9\left(\mathrm{CH}_{3}\right)$; HRMS (ESI+) calcd for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$: $m / z ~ 317.8947$, found: $m / z 317.8935$.

4-(4-Bromophenyl)-5-phenylisoxazole (3ca)

3ca was prepared according to the general procedure, employing 5-phenylisoxazole (1c) (29 mg, 0.20 mmol$)$ and (4-bromophenyl)(trimethyl)silane (2a) ($46 \mathrm{mg}, 0.20 \mathrm{mmol}$) for $48 \mathrm{~h} . \mathrm{FC}$ (hexane/ethyl acetate $=50: 1$ to $10: 1$) gave 3ca as a white solid ($17 \mathrm{mg}, 0.057$ mmol, 28\%).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 8.34(\mathrm{~s}, 1 \mathrm{H}), 7.61(\mathrm{dd}, J=8.1,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.54-7.51(\mathrm{~m}$, $2 \mathrm{H}), 7.45-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.27-7.24(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 164.3\left(4^{\circ}\right), 151.5$ (CH), 132.2 (CH), 130.3 (CH), 130.2 (CH), 129.0 (4°), 128.9 (CH), 127.3 (4°), 127.3 (CH), $122.2\left(4^{\circ}\right)$, $115.1\left(4^{\circ}\right)$; HRMS (ESI+) calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{BrNO}[\mathrm{M}+\mathrm{H}]^{+}: m / z 300.0019$, found: m / z 300.0004 .

4-(4-Bromophenyl)-3,5-dimethylisoxazole (3da)

3da was prepared according to the general procedure, employing 3,5-dimethylisoxazole (1d) (19 mg, 0.20 mmol$)$ and (4-bromophenyl)(trimethyl)silane (2a) (46 mg, 0.20 mmol) for 48 h . FC (pentane/dimethylether = 10:1) gave 3da as a yellow solid ($8.6 \mathrm{mg}, 0.034$ mmol, 17\%).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 7.57(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H})$, 2.25 (s, 3H); $\left.{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(} \mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 165.3\left(4^{\circ}\right), 158.4\left(4^{\circ}\right), 132.0(\mathrm{CH}), 130.7(\mathrm{CH})$, $129.4\left(4^{\circ}\right), 121.7\left(4^{\circ}\right), 115.7\left(4^{\circ}\right), 11.5\left(\mathrm{CH}_{3}\right) 10.7\left(\mathrm{CH}_{3}\right)$; HRMS (ESI+) calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{BrNO}$ $[\mathrm{M}+\mathrm{H}]^{+}: m / z$ 252.0019, found: $m / z 252.0009$.

3-(4-Bromophenyl)- N-tosylindole (3ea)

3ea was prepared according to the general procedure, employing N-p-toluenesulfonylindole (1e) (54 mg, 0.20 mmol$)$ and (4-bromophenyl)(trimethyl)silane (2a) (46 mg, 0.20 mmol) for $48 \mathrm{~h} . \mathrm{FC}$ (pentane/dimethylether $=10: 1$) gave 3ea as a white solid ($38 \mathrm{mg}, 0.088$ mmol, 44\%).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 8.07(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.70 (s, 1H), 7.59 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.47 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.38 (t, $J=8.1 \mathrm{~Hz}$, 1H), $7.30(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.24$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 150\right.$ $\mathrm{MHz}) \delta 145.1\left(4^{\circ}\right) 135.4\left(4^{\circ}\right), 135.1\left(4^{\circ}\right) 132.0(\mathrm{CH}), 130.0(\mathrm{CH}), 129.4(\mathrm{CH}), 128.9\left(4^{\circ}\right), 126.9$ (CH), 125.0 (CH), 123.7 (CH), 123.0 (CH), 122.7 (4°), 121.4 (4°), 120.1 (CH), $113.9(\mathrm{CH})$, $21.6\left(\mathrm{CH}_{3}\right)$, one 4° carbon peak should be overlapped; HRMS (ESI+) calcd for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{BrNO}_{2} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+}: m / z 426.0158$, found: $m / z 426.0139$.

2-(4-Bromophenyl)-benzo[b]thiophene (3fa) and 3-(4-bromophenyl)-benzo[b]thiophene (3fa’)

3fa

3fa'

3fa was prepared according to the general procedure, employing benzo[b]thiophene (1f) (27 mg, 0.20 mmol$)$ and (4-bromophenyl)(trimethyl)silane (2a) (46 mg, 0.20 mmol) for $48 \mathrm{~h} . \mathrm{FC}$ (pentane) gave 3fa as mixture of 3fa' (a white solid, $13 \mathrm{mg}, 0.044 \mathrm{mmol}$, 22\%, 3fa:3fa' = 83:17). The characterization data for compound 3fa' corresponded to the reported values. ${ }^{\text {S3 }}$
${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 f a}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 7.83(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-$ $7.53(\mathrm{~m}, 5 \mathrm{H}), 7.38-7.32(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 f a}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 142.9\left(4^{\circ}\right), 140.6\left(4^{\circ}\right)$, $139.5\left(4^{\circ}\right), 133.3\left(4^{\circ}\right)$, $132.1(\mathrm{CH}), 127.9(\mathrm{CH}), 124.7(\mathrm{CH}), 124.6(\mathrm{CH}), 123.7(\mathrm{CH}), 122.3$ (CH), 122.2 (4°), 119.9 (CH); HRMS (APCI +) calcd for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{BrS}[\mathrm{M}]^{+}: m / z 287.9603$, found: m/z 287.9596.

X-ray crystallography

Details of the crystal data and a summary of the intensity data collection parameters for $\mathrm{AuCl}_{3}(\mathrm{PyC})$ are listed in Table S1. In each case, a suitable crystal was mounted with mineral oil on a glass fiber and transferred to the goniometer of a Rigaku Saturn CCD diffractometer. Graphite-monochromated Mo $K \alpha$ radiation $(\lambda=0.71075 \AA$) was used. The structures were solved by direct methods with (SIR-97) ${ }^{\text {S4 }}$ and refined by full-matrix least-squares techniques against F^{2} (SHELXL-97). ${ }^{55}$ The intensities were corrected for Lorentz and polarization effects. Non-hydrogen atoms were refined anisotropically. Hydrogen atoms were placed using AFIX instructions. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif (CCDC 1045812).

Table S1: Crystallographic data and structure refinement details for compound $\left(\left[\mathrm{AuCl}_{3}(\mathrm{PyC})\right] \cdot \mathrm{PhNO}_{2}\right)$.

	$\left[\mathrm{AuCl}_{3}(\mathrm{PyC})\right] \cdot \mathrm{PhNO}_{2}$
formula	$\mathrm{C}_{72} \mathrm{H}_{70} \mathrm{Au}_{2} \mathrm{Cl}_{6} \mathrm{~N}_{4} \mathrm{O}_{4}$
fw	1661.95
$\mathrm{~T}(\mathrm{~K})$	$103(2)$
$\lambda(\AA)$	0.71075
Cryst syst	Monoclinic
space group	$C 2 / \mathrm{c}$
$a,(\AA)$	$8.332(5)$
$b,(\AA)$	$25.831(13)$
$c,(\AA)$	$16.488(9)$
α, \square deg \square	90
$\beta \square($ deg \square	$104.578(8)$
γ, \square deg \square	90
$V,\left(\AA^{3}\right)$	$3434(3)$
Z	2
$\mathrm{D}_{\text {calc }},\left(\mathrm{g} / \mathrm{cm}{ }^{3}\right)$	1.607
$\mu\left(\mathrm{~mm}{ }^{-1}\right)$	4.551
$\mathrm{~F}(000)$	1644
cryst size (mm)	$0.10 \times 0.10 \times 0.05$
2θ range, (deg \square	$\square .00-25.00$
reflns collected	11449
indep reflns $/ R_{\text {int }}$	$3024 / 0.0567$
params	312
GOF on F^{2}	1.043
R_{1}, w $R_{2}[\mathrm{I}>2 \sigma(\mathrm{I})]$	$0.0522,0.1235$
R_{1}, w $R_{2}($ all data $)$	$0.0676,0.1320$

Figure S2: ORTEP drawing of $\mathrm{AuCl}_{3}(\mathrm{PyC})$ with 50% probability. All hydrogen atoms and nitrobenzene molecule are omitted for clarity.

Computational study

The Gaussian 09 program ${ }^{\text {s6 }}$ running on a SGI Altix 4700 system was used for optimization (B3LYP/SDD ${ }^{57}$ for $\mathrm{Au}, 6-31 \mathrm{G}(\mathrm{d})$ for others). Structures were optimized without any symmetry assumptions. Zero-point energy, enthalpy, and Gibbs free energy at 298.15 K and 1 atm were estimated from the gas-phase studies. Harmonic vibration frequency calculation at the same level was performed to verify all stationary points as local minima (with no imaginary frequency). Visualization of the results was performed by use of GaussView 5.0.9 software.

$\mathrm{AuCl}(\mathrm{IPr})$

$\mathrm{AuCl}_{3}(\mathrm{IPr})$

Figure S3: Optimized structures of gold complexes. C: gray, H: white, N: blue, Cl: green, Au: yellow.

Scheme S1: Hypothetical reactions for estimation of the stability of gold(III) complexes.

Table S2: Uncorrected and thermal-corrected (298 K) energies of stationary points (Hartree). ${ }^{\text {a }}$

compound	E	$E+Z P E$	H	G
$\mathrm{AuCl}(\mathrm{PyC})$	-1812.67004697	-1812.142233	-1812.106688	-1812.213402
$\mathrm{AuCl}_{3}(\mathrm{PyC})$	-2733.05219302	-2732.520790	-2732.482012	-2732.594673
$\mathrm{AuCl}_{(\mathrm{IPr})}$	-1756.11982458	-1755.544370	-1755.509197	-1755.614045
$\mathrm{AuCl}_{3}(\mathrm{PyC})$	-2676.49630661	-2675.917036	-2675.878847	-2675.988002
Cl_{2}	-920.349884457	-920.348706	-920.345190	-920.370557

a) E : electronic energy; ZPE: zero-point energy; $H\left(=E+Z P E+E_{\text {vib }}+E_{\text {rot }}+E_{\text {trans }}+R T\right)$: sum of
electronic and thermal enthalpies; $G(=H-T S)$: sum of electronic and thermal free energies.

Table S3: Cartesian coordinates for the gold complexes and chlorine.

AuCl(PyC)												
C	-0.686338	-1.334196	0.000074	H	1.223266	-6.365996	0.000263	H	-1.171639	-2.353408	2.657842	
C	-2.063553	-1.144797	-0.000006	C	-4.120086	0.360864	0.000049	H	0.084655	-3.365845	3.384284	
C	-2.638692	0.143335	0.000055	C	-4.811639	0.454251	1.226947	C	-0.134329	-2.693286	-2.549550	
C	-1.760980	1.205133	0.000144	C	-4.811722	0.453554	-1.226855	H	-1.172417	-2.354162	-2.657585	
H	-2.719914	-2.011902	-0.000100	C	-6.198247	0.645302	1.205664	H	0.507452	-1.810153	-2.656077	
H	-2.089884	2.237721	0.000232	C	-6.198330	0.644602	-1.205588	H	0.084088	-3.366350	-3.383990	
C	0.409028	2.230102	0.000026	C	-6.889334	0.740583	0.000034	C	-4.086105	0.353314	-2.550789	
C	0.766753	2.800192	1.230823	H	-6.737181	0.717838	2.146908	H	-3.366363	1.170655	-2.684973	
C	0.766391	2.800180	-1.230884	H	-6.737329	0.716591	-2.146838	H	-3.520644	-0.582125	-2.638817	
C	1.518795	3.978262	1.200578	H	-7.965994	0.887549	0.000028	H	-4.792731	0.395463	-3.384743	
C	1.518447	3.978246	-1.200873	N	-0.407771	1.016310	0.000114	C	-4.085965	0.354556	2.550894	
C	1.911466	4.577842	-0.000209	C	0.389926	2.161686	-2.546114	H	-3.521128	-0.581212	2.639525	
H	1.810675	4.433367	2.144205	H	0.893399	1.194853	-2.667121	H	-3.365665	1.171498	2.684440	
H	1.810074	4.433329	-2.144589	H	-0.688816	1.980539	-2.627991	H	-4.792494	0.397757	3.384875	
C	-0.137436	-2.730375	0.000118	H	0.685856	2.801438	-3.382015	C	2.761353	5.826604	-0.000327	
C	0.105071	-3.384958	-1.226089	C	0.390723	2.161702	2.546177	H	3.828730	5.570546	-0.000019	
C	0.105420	-3.384732	1.226380	H	-0.687881	1.979793	2.628101	H	2.573297	6.440327	-0.887504	
C	0.594564	-4.695556	-1.204923	H	0.894884	1.195244	2.667343	H	2.572900	6.440763	0.886467	
C	0.594924	-4.695324	1.205313	H	0.686215	2.801813	3.381960	C	0.200868	-0.217526	0.000078	
C	0.840058	-5.349138	0.000220	C	-0.133652	-2.692825	2.549779	Au	2.211308	-0.383949	-0.000056	
H	0.788817	-5.202537	-2.146734	H	0.508379	-1.809854	2.656137	Cl	4.532043	-0.589953	-0.000229	
H	0.789469	-5.202121	2.147162									

$\mathrm{AuCl}_{3}(\mathrm{PyC})$

C	-0.852015	-1.320809	0.075220	H	1.067140	-6.348485	0.230580	H	0.046875	-3.236463	3.520291
C	-2.238233	-1.150297	0.076545	C	-4.326226	0.303783	-0.003606	C	-0.782144	-2.952272	-2.380877
C	-2.841206	0.115626	0.007800	C	-5.028008	0.369038	1.219276	H	-1.876528	-2.850769	-2.364795
C	-1.985339	1.196166	-0.048046	C	-5.005699	0.400445	-1.236872	H	-0.356182	-1.976350	-2.625778
H	-2.871164	-2.032480	0.126879	C	-6.417094	0.537803	1.186756	H	-0.531979	-3.637401	-3.196176
H	-2.336620	2.219471	-0.098495	C	-6.395496	0.567326	-1.224948	C	-4.267130	0.326080	-2.555492
C	0.136077	2.301160	-0.060553	C	-7.098251	0.636636	-0.024329	H	-3.578727	1.170340	-2.688493
C	0.344343	2.971083	1.156642	H	-6.965650	0.590734	2.123590	H	-3.666113	-0.587136	-2.639377
C	0.524491	2.837636	-1.299853	H	-6.927453	0.641339	-2.169898	H	-4.969379	0.340863	-3.393852
C	1.087975	4.154182	1.114619	H	-8.177052	0.766030	-0.032440	C	-4.312004	0.262330	2.547952
C	1.261904	4.026001	-1.275357	N	-0.629499	1.045245	-0.038343	H	-3.792060	-0.697377	2.657842
C	1.581455	4.681292	-0.082386	C	0.123979	2.220088	-2.617541	H	-3.554720	1.046365	2.670265
H	1.281820	4.676784	2.048038	H	0.590440	1.242719	-2.771255	H	-5.019123	0.351807	3.377476
H	1.586915	4.451480	-2.221603	H	-0.963683	2.084743	-2.683420	C	2.432057	5.928644	-0.087696
C	-0.315614	-2.723528	0.126273	H	0.425893	2.869408	-3.443810	H	3.496452	5.670134	-0.017015
C	-0.259960	-3.483640	-1.064585	C	-0.261883	2.504697	2.459230	H	2.296604	6.503721	-1.009648
C	0.029981	-3.302000	1.368541	H	-1.336455	2.734279	2.495389	H	2.196780	6.579322	0.760879
C	0.250784	-4.784941	-1.004780	H	-0.132433	1.432325	2.616436	C	-0.015040	-0.177904	0.013574
C	0.532901	-4.608560	1.380718	H	0.209743	3.018151	3.301168	Au	2.061010	-0.308670	-0.024243
C	0.664760	-5.339447	0.203440	C	-0.182246	-2.576768	2.678069	Cl	2.014002	-0.782012	-2.337745
H	0.317519	-5.366349	-1.920528	H	0.454052	-1.691382	2.768319	Cl	2.201595	0.132851	2.290896
H	0.814870	-5.053809	2.331181	H	-1.224321	-2.248832	2.790435	Cl	4.417258	-0.475197	-0.085212

$\mathrm{AuCl}(\mathrm{IPr})$

| C | 0.678108 | 0.000225 | -2.656979 | H | 1.370313 | 2.383433 | -1.187702 | H | -1.370154 | -2.383222 | -1.187814 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C | -0.678047 | 0.000267 | -2.656990 | C | 2.411053 | -2.578079 | -0.911683 | C | -3.044255 | 3.389541 | -2.059311 |
| H | 1.392082 | 0.000311 | -3.465262 | H | 1.369950 | -2.383252 | -1.187141 | H | -3.024100 | 2.833497 | -3.003849 |
| H | -1.392006 | 0.000392 | -3.465286 | C | 3.044760 | 3.389526 | -2.059394 | H | -4.089111 | 3.641219 | -1.843818 |
| C | 2.465223 | 0.000054 | -0.907902 | H | 4.089545 | 3.641236 | -1.843596 | H | -2.499657 | 4.329510 | -2.206439 |

C	3.113445	-1.237086	-0.723446	H	3.024895	2.833521	-3.003962	C	-2.387480	3.389925	0.398843
C	3.113579	1.237126	-0.723516	H	2.500179	4.329485	-2.206642	H	-3.399796	3.652265	0.727671
C	4.461085	-1.206400	-0.344884	C	2.387319	3.389782	0.398585	H	-1.905887	2.825702	1.204116
C	4.461215	1.206314	-0.344948	H	1.905469	2.825532	1.203685	H	-1.832556	4.324434	0.253712
C	5.129930	-0.000073	-0.157312	H	3.399558	3.652040	0.727717	C	-3.044511	-3.389128	-2.059926
H	4.990671	-2.141817	-0.189795	H	1.832483	4.324330	0.253352	H	-4.089336	-3.640827	-1.844305
H	4.990901	2.141681	-0.189895	C	3.044055	-3.389102	-2.059824	H	-3.024510	-2.832951	-3.004391
H	6.175154	-0.000119	0.139814	H	3.023758	-2.832852	-3.004240	H	-2.499950	-4.329082	-2.207282
C	-2.465192	0.000127	-0.907944	H	4.088952	-3.640781	-1.844524	C	-2.387366	-3.389878	0.398126
C	-3.113471	1.237216	-0.723382	H	2.499471	-4.329056	-2.207089	H	-1.832502	-4.324389	0.252759
C	-3.113498	-1.236998	-0.723678	C	2.387587	-3.390065	0.398406	H	-1.905610	-2.825791	1.203398
C	-4.461114	1.206435	-0.344839	H	3.399933	-3.652521	0.727045	H	-3.399635	-3.652223	0.727087
C	-4.461141	-1.206278	-0.345131	H	1.906101	-2.826031	1.203876	Au	-0.000019	-0.000133	1.517572
C	-5.129911	0.000064	-0.157393	H	1.832621	-4.324525	0.253111	Cl	-0.000099	-0.000367	3.842650
H	-4.990743	2.141813	-0.189656	C	-2.411112	2.578253	-0.911437	N	1.079889	0.000124	-1.326043
H	-4.990790	-2.141684	-0.190181	H	-1.370049	2.383480	-1.187092	N	-1.079850	0.000166	-1.326062
H	-6.175140	0.000042	0.139716	C	-2.411180	-2.578013	-0.912037	C	0.000013	0.000052	-0.491192
C	2.411300	2.578181	-0.911739								

	$l_{3}(\mathrm{IPr})$										
C	0.676288	-0.032413	-2.676852	H	1.546429	2.390487	-1.189370	C	-2.564123	3.236548	-2.353896
C	-0.676580	0.034421	-2.676754	C	2.313678	-2.686690	-0.934076	H	-2.257962	2.524276	-3.128668
H	1.388988	-0.069739	-3.484013	H	1.243889	-2.486153	-0.833621	H	-3.627297	3.457557	-2.506309
H	-1.389357	0.072437	-3.483817	C	2.963464	2.792192	-2.759804	H	-2.000678	4.164136	-2.508754
C	2.489332	-0.109616	-0.961815	H	4.047090	2.868167	-2.908741	C	-2.656353	3.754264	0.122723
C	3.070649	-1.375886	-0.735608	H	2.585945	2.034733	-3.455622	H	-3.684329	4.121087	0.019778
C	3.224490	1.094897	-0.912507	H	2.516747	3.754357	-3.036392	H	-2.520785	3.369791	1.137155
C	4.428314	-1.400993	-0.392531	C	3.101807	3.592973	-0.368029	H	-1.990499	4.615385	0.000318
C	4.578159	0.999849	-0.566920	H	2.928280	3.351574	0.683453	C	-2.964528	-2.789623	-2.761675
C	5.172085	-0.229204	-0.298546	H	4.165234	3.821037	-0.505474	H	-4.048189	-2.865154	-2.910608
H	4.908976	-2.354358	-0.201374	H	2.542705	4.505630	-0.602836	H	-2.586813	-2.031774	-3.456964
H	5.174591	1.903993	-0.508154	C	2.564797	-3.234503	-2.356404	H	-2.518126	-3.751726	-3.038983
H	6.222924	-0.274866	-0.025741	H	2.258373	-2.521784	-3.130662	C	-3.102999	-3.592135	-0.370512
C	-2.489443	0.110696	-0.961518	H	3.628020	-3.455102	-2.509067	H	-2.544163	-4.504775	-0.606015
C	-3.070390	1.376965	-0.734334	H	2.001606	-4.162146	-2.511851	H	-2.929387	-3.351561	0.681146
C	-3.224945	-1.093638	-0.913109	C	2.657435	-3.753881	0.119850	H	-4.166496	-3.819788	-0.508099
C	-4.428028	1.402202	-0.391171	H	3.685542	-4.120242	0.016580	Au	0.000085	-0.000912	1.520837
C	-4.578577	-0.998461	-0.567407	H	2.521797	-3.370164	1.134558	Cl	0.348714	2.328705	1.525695
C	-5.172128	0.230555	-0.298040	H	1.991895	-4.615167	-0.003109	Cl	0.000195	-0.002157	3.871312
H	-4.908413	2.355558	-0.199278	C	-2.313048	2.687685	-0.931963	Cl	-0.348559	-2.330541	1.523151
H	-5.175270	-1.902478	-0.509320	H	-1.243312	2.486756	-0.831741	N	1.085765	-0.049276	-1.348370
H	-6.222943	0.276315	-0.025156	C	-2.634644	-2.450538	-1.291019	N	-1.085925	0.050288	-1.348217
C	2.633771	2.451915	-1.289376	H	-1.547279	-2.389487	-1.191023	C	-0.000036	0.000100	-0.534522

> | Cl_{2} | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | |

References

S1) K. Hata, Y. Segawa, K. Itami, Chem. Commun. 2012, 48, 6642.
S2) S. Gaillard, A. M. Z. Slawin, A. T. Bonura, E. D. Stevens, S. T. Nolan, Organometallics 2010, 29, 394.

S3) K. Funaki, T. Sato, S. Oi, Org. Lett. 2012, 14, 6186.
S4) A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazza, A. Guagliardi, A. G. G. Moliterni, G. Polidori, R. Spagna, J. Appl. Crystallogr. 1999, 32, 115.

S5) G. M. Sheldrick, University of Göttingen: Göttingen, Germany 1997.
S6) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT, 2013.

S7) P. Fuentealba, H. Preuss, H. Stoll, L. Von Szentpály, Chem. Phys. Lett. 1982, 89, 418.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{AuCl}_{3}(\mathrm{PyC})\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathrm{AuCl}_{3}(\mathrm{PyC})\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\mathrm{HO}^{-}-$ 261
$60 Z$
$1 Z Z$

-
${ }^{1} \mathrm{H}$ NMR spectrum of 3aa $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $3 \mathbf{a a}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)
为
$89 L$
$0 \angle L$
$2 \angle L$

HOZI \longrightarrow
OZZI
$S \angle Z I \longrightarrow$
$6 L Z I \longrightarrow$
EZEI -
$L \angle L I=$
SESI
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 a b}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
(2)
000
85'L

$-\overline{1 Z Z}$
OZZ $-\longrightarrow$

258

198 | $80^{\prime} \overline{\mathrm{I}}$ |
| :--- |
| $0^{\circ} \mathrm{I}$ |

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 a b}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$89 L$
ZLLL
$6 \angle t I-$
Z'ESI
$\underset{\text { CCOI }-}{\text { L.OI }}$
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 b a}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $3 \mathbf{b a}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

ギ IZ I
$688 \mathrm{I} \longrightarrow$
$06 \mathrm{I} \longrightarrow \mathrm{I} \longrightarrow$
$\mathrm{IZ} \mathrm{\& 1} \longrightarrow$

867 I
$\mathrm{St9I}$
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3} \mathbf{b b}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 b b}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

89 L
$0 \angle 5$

9 SIL
6 SIL
09 OLI
L'GZ
L9ZI \longrightarrow
LGZI
ZGZI

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 b c}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 b c}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Z'S9I
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 b d}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $3 \mathbf{c a}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $3 \mathbf{c a}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

sist -

ร991 -
${ }^{1} \mathrm{H}$ NMR spectrum of 3da $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

soz

902
∞ м
${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 d a}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

LSII
L'IZI
TGZI
LOEI
OZEI
t8SI
ε ع9I
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 e a}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

8S'I
teて

${ }^{13} \mathrm{C}$ NMR spectrum of $3 \mathbf{e a}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$9.1 Z$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 f a}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

000
tsill

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 f a}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

00

-

