Supporting Information File 1

for

Stereochemical outcomes of C–F activation reactions of benzyl fluoride

Neil S. Keddie^{†,1}, Pier Alexandre Champagne^{†,2}, Justine Desroches², Jean-François Paquin^{*,2} and David O'Hagan^{*,1}

Address: ¹School of Chemistry, Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, United Kingdom and ²PROTEO, CCVC, Département de chimie, 1045 Avenue de la Médecine, Université Laval, Québec, QC G1V 0A6, Canada

Email: Jean-François Paquin - jean-francois.paquin@chm.ulaval.ca; David O'Hagan - do1@st-andrews.ac.uk

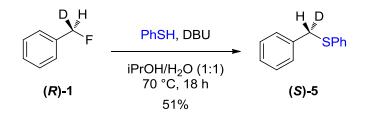
[†] These authors contributed equally to this work.

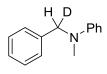
* Corresponding author

Experimental protocols

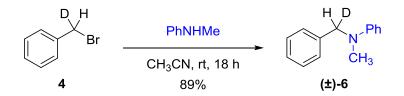

1. General information

Unless otherwise noted, all commercial reagents were used without further purification. Dichloromethane and acetonitrile were purified using a Vacuum Atmospheres Inc. Solvent Purification System. Thin-layer chromatography (TLC) analysis of reaction mixtures was performed using Silicyle silica gel 60 Å F₂₅₄ TLC plates, and visualized under UV or by staining with iodine. Flash column chromatography was carried out on Silicycle Silica Gel 60 Å, 230 × 400 mesh. High resolution mass spectra were obtained on a LC/MS-TOF Agilent 6210 using either electrospray ionization (ESI) or atmospheric pressure photoionization (APPI). ¹H and ¹³C nuclear magnetic resonance (NMR) spectra were recorded using Agilent DD2 500 and Varian Inova 400 spectrometers. ¹H and ¹³C chemical shifts are reported in ppm downfield of tetramethylsilane and referenced to tetramethylsilane (δ = 0.00 ppm) or residual chloroform peak (δ = 7.26 ppm). Coupling constants (*J*) are measured in hertz (Hz). Multiplicities are reported using the following abbreviations: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad resonance. Infrared spectra were recorded using a Thermo Scientific Nicolet 380 FTIR spectrometer. Melting points were recorded on a Stanford Research System OptiMelt capillary melting point apparatus and are uncorrected.


2. Experimental data


7-[²**H**₁]Benzyl phenyl thioether (5) ¹H NMR (500 MHz, CDCl₃) δ (ppm) = 7.40 - 7.27 (m, 9H), 7.27 -7.21 (m, 2H), 4.16 (t, J = 1.8 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ (ppm) = 137.5, 136.5, 129.9, 128.97, 128.95, 128.6, 127.3, 126.5, 38.9 (t, J = 21.5Hz); IR (ATR, ZnSe) v (cm⁻¹) = 3059, 2922, 1583, 1569, 1478, 1451, 1438, 1021, 729, 699, 685; HRMS-ESI (+) *m/z* calcd for C₁₃H₁₁DNaS [M+Na]⁺ 224.0615 found 224.0639.

To a stirred solution of 7-[²H₁]benzyl bromide (75 mg, 0.436 mmol, 1.0 equiv) under argon atmosphere in dry CH₃CN (1.8 mL) were added thiophenol (90 µL, 2.0 equiv) and 1,8-diazabicyclo[5.4.0]undec-7-ene (126 µL, 1.9 equiv). The resulting solution was stirred at room temperature for 18 h. The reaction was guenched with 1 M NaOH and extracted with Et₂O (3x). The combined organic extracts were washed with 1 M NaOH, 3 M HCl and H₂O, dried with MgSO₄, filtered and evaporated under reduced pressure. The crude product was purified by silica gel chromatography using hexanes as the eluent to yield (\pm) -7-[²H₁]benzyl phenyl thioether **5** (81 mg, 92%) as a colorless solid; ee was racemic by ²H{¹H} NMR analysis with PBLG in CHCl₃.



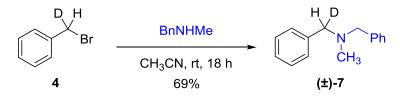
In a sealable vial, were successively added thiophenol (220 µL, 3.0 equiv), 1,8diazabicyclo[5.4.0]undec-7-ene (323 µL, 3.0 equiv), isopropanol (0.72 mL) and H₂O (0.72 mL). (R)-7-[²H₁]benzyl fluoride ((R)-1, 75 mg, 0.436 mmol, 1.0 equiv) was then added and the vial was sealed. The resulting solution was stirred at 70 °C for 18 h. The reaction was quenched with NaHCO₃ ag. sat. and extracted with Et_2O (3x). The combined organic extracts were washed with brine, dried with MgSO₄, filtered and evaporated under reduced pressure. The crude product was purified by silica gel chromatography using hexanes/ethyl acetate (99/1) as the eluent to yield (S)-7- $[^{2}H_{1}]$ benzyl phenyl thioether 5 (73 mg, 51%) as a colorless solid; 94% ee by ${}^{2}H{}^{1}H{}$ NMR analysis with PBLG in CHCl₃.



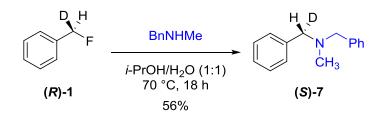
 $N-(7-[^{2}H_{1}]Benzyl)-N-methylaniline (6)$ ⁻N^{-Ph} ¹H NMR (500 MHz, CDCl₃) δ (ppm) = 7.37 - 7.33 (m, 2H), 7.30 -7.23 (m, 5H), 6.81 - 6.77 (m, 2H), 6.75 (tg, J = 7.2, 1.1 Hz, 1H), 4.55


(t, J = 2.3 Hz, 1H), 3.05 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ (ppm) = 149.8, 139.1, 129.3, 128.7, 127.0, 126.9, 116.6, 112.4, 56.4 (t, J = 20.1 Hz), 38.6; IR (ATR, ZnSe) v (cm⁻¹) = 3026, 2897, 1506, 1452, 1370, 1031, 861, 730; HRMS-ESI (+) *m/z* calcd for C₁₄H₁₄DNNa [M+Na]⁺ 221.1160 found 221.1162.

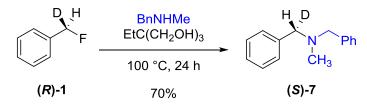
To a stirred solution of 7-[${}^{2}H_{1}$]benzyl bromide (75 mg, 0.436 mmol, 1.0 equiv) under argon atmosphere in dry CH₃CN (2.0 mL) was added *N*-methylaniline (142 µL, 3.0 equiv). The resulting solution was stirred at room temperature for 18 h. The reaction was quenched with NaHCO₃ aq. sat. and extracted with Et₂O (3x). The combined organic extracts were washed with H₂O, dried with MgSO₄, filtered and evaporated under reduced pressure. The crude product was purified by silica gel chromatography using hexanes/ethyl acetate (100:0 to 98:2) as the eluent to yield (±)-*N*-(7-[${}^{2}H_{1}$]-benzyl)-*N*-methylaniline **6** (77 mg, 89%) as a yellow oil; ee was racemic by ${}^{2}H{}^{1}H{}$ NMR analysis with PBLG in CHCl₃.

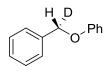


In a sealable vial, were successively added (*R*)-7-[${}^{2}H_{1}$]benzyl fluoride (83 mg, 0.747 mmol, 1.0 equiv), isopropanol (0.75 mL), H₂O (0.75 mL) and *N*-methylaniline (243 µL, 3.0 equiv). The vial was sealed and the resulting solution was stirred at 70 °C for 18 h. The reaction was quenched with 1 M Na₂CO₃ and extracted with Et₂O (3×). The combined organic extracts were washed with brine, dried with MgSO₄, filtered and evaporated under reduced pressure. The crude product was purified by silica gel chromatography using hexanes/ethyl acetate (100:0 to 99:1) as the eluent to yield (*S*)-*N*-(7-[${}^{2}H_{1}$]-benzyl)-*N*-methylaniline ((*S*)-**6**, 56 mg, 64%) as a yellow oil; 90% ee by ${}^{2}H{}^{1}H$ NMR analysis with PBLG in CHCl₃.



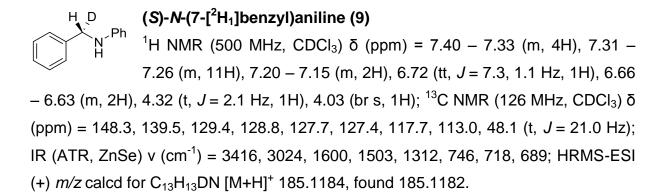
In a sealable vial, under argon atmosphere, were successively added (R)-7-[$^{2}H_{1}$]benzyl fluoride (81 mg, 0.720 mmol, 1.0 equiv), freshly ground 1,1,1tris(hydroxymethyl)propane (106 mg, 1.1 equiv) and N-methylaniline (153 µL, 2.0 equiv). The vial was sealed and the resulting solution was stirred at 100 °C for 24 h. The reaction was quenched with 1 M Na₂CO₃ and extracted with Et₂O (3x). The combined organic extracts were washed with brine, dried with MgSO₄, filtered and evaporated under reduced pressure. The crude product was purified by silica gel chromatography using hexanes/ethyl acetate (98:2) as the eluent to yield (S)-N-(7- $[^{2}H_{1}]$ benzyl)-*N*-methylaniline ((S)-6, 53 mg, 61%) as a yellow oil; 87% ee by $^{2}H\{^{1}H\}$ NMR analysis with PBLG in CHCl₃.

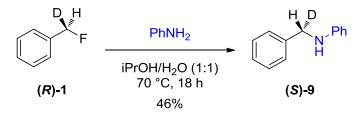

N-(7-[²H₁]Benzyl)-*N*-methyl-1-phenylmethanamine (7) [^]Ph ¹H NMR (500 MHz, CDCl₃) δ (ppm) = 7.42 – 7.37 (m, 4H), 7.37 – 7.32 (m, 4H), 7.29 - 7.24 (m, 2H), 3.56 - 3.54 (m, 2H), 3.51 (br s, 1H), 2.21 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ (ppm) = 139.5, 139.4, 129.07, 129.05, 128.3, 127.05, 127.04, 62.0, 61.6 (t, J = 20.1 Hz), 42.4; IR (ATR, ZnSe) v $(cm^{-1}) = 3028, 2790, 1494, 1453, 1363, 1024, 736, 698; HRMS-ESI (+) m/z$ calcd for C₁₅H₁₆DNNa [M+Na]⁺ 235.1316, found 235.1309.


To a stirred solution of 7-[²H₁]benzyl bromide (75 mg, 0.436 mmol, 1.0 equiv) under argon atmosphere in dry CH₃CN (2.0 mL) was added *N*-benzylmethylamine (170 µL, 3.0 equiv). The resulting solution was stirred at room temperature for 18 h. The reaction was guenched with 1 M Na₂CO₃ and extracted with Et₂O (3x). The combined organic extracts were washed with H₂O, dried with MgSO₄, filtered and evaporated under reduced pressure. The crude product was purified by silica gel chromatography using hexanes/ethyl acetate (98/2) as the eluent to yield (±)-N-(7- $[^{2}H_{1}]$ benzyl)-*N*-methyl-1-phenylmethanamine (**7**, 64 mg, 69%) as a pale yellow oil; ee could not be determined as a result of poor ${}^{2}H{}^{1}H{}$ NMR resolution.

In a sealable vial, were successively added (R)-7-[²H₁]benzyl fluoride (80 mg, 0.720 mmol, 1.0 equiv), isopropanol (0.72 mL), H_2O (0.72 mL) and Nbenzylmethylamine (279 µL, 3.0 equiv). The vial was sealed and the resulting solution was stirred at 70 °C for 18 h. The reaction was guenched with 1 M Na₂CO₃ and extracted with Et₂O (3x). The combined organic extracts were washed with brine, dried with MgSO₄, filtered and evaporated under reduced pressure. The crude product was purified by silica gel chromatography using hexanes/ethyl acetate (98/2) as the eluent to yield $(S)-N-(7-[^{2}H_{1}]benzy])-N-methyl-1-phenylmethanamine ((S)-7,$ 85 mg, 56%) as a colorless oil; ee could not be determined as a result of poor ${}^{2}H{}^{1}H{}$ NMR resolution

In a sealable vial, under argon atmosphere, were successively added (R)-7- $[^{2}H_{1}]$ benzyl fluoride (80 mg, 0.720 mmol, 1.0 equiv), freshly ground 1,1,1tris(hydroxymethyl)propane (106 mg, 1.1 equiv) and N-benzylmethylamine (186 µL, 2.0 equiv). The vial was sealed and the resulting solution was stirred at 100 °C for 24 h. The reaction was quenched with 1 M Na₂CO₃ and extracted with Et₂O (3x). The combined organic extracts were washed with brine, dried with MgSO₄, filtered and evaporated under reduced pressure. The crude product was purified by silica gel chromatography using hexanes/ethyl acetate (98:2) as the eluent to yield (S)-N-(7- $[^{2}H_{1}]$ benzyl)-*N*-methyl-1-phenylmethanamine ((S)-7, 108 mg, 70%) as a colorless oil; ee could not be determined as a result of poor ²H{¹H} NMR resolution



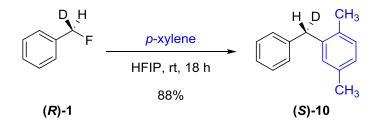

(S)-7-[²H₁]Benzyl phenyl ether (8) ¹H NMR (500 MHz, CDCl₃) δ (ppm) = 7.46 - 7.42 (m, 2H), 7.42 -7.35 (m, 2H), 7.35 - 7.27 (m, 3H), 7.01 - 6.93 (m, 3H), 5.06 (br s,

1H). Analytical data were identical to those previously reported [1].

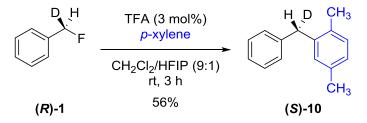
In a sealable vial, were successively added phenol (203 mg, 3.0 equiv), NaOH (86 mg, 3.0 equiv), isopropanol (0.72 mL) and H₂O (0.72 mL). (*R*)-7-[²H₁]benzyl fluoride (80 mg, 0.720 mmol, 1.0 equiv) was then added and the vial was sealed. The resulting solution was stirred at 70 °C for 18 h. The reaction was quenched with 1M Na₂CO₃ and extracted with Et₂O (3×). The combined organic extracts were washed with brine, dried with MgSO₄, filtered and evaporated under reduced pressure. The crude product was purified by silica gel chromatography using hexanes/ethyl acetate (99:1) as the eluent to yield (*S*)-7-[²H₁]-benzyl phenyl ether ((*S*)-**8**, 63 mg, 47%) as a colorless solid; 93% ee by ²H{¹H} NMR analysis with PBLG in CHCl₃.

In a sealable vial, were successively added (*R*)-7-[$^{2}H_{1}$]benzyl fluoride (80 mg, 0.720 mmol, 1.0 equiv), isopropanol (0.72 mL), H₂O (0.72 mL) and aniline (197 μ L, 3.0 equiv). The vial was sealed and the resulting solution was stirred at 70 °C for

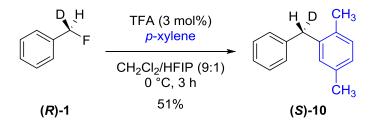
18 h. The reaction was quenched with 1M Na₂CO₃ and extracted with Et₂O (3×). The combined organic extracts were washed with brine, dried with MgSO₄, filtered and evaporated under reduced pressure. The crude product was purified by silica gel chromatography using hexanes/ethyl acetate (98:2) as the eluent to yield (*S*)-*N*-(7- $[^{2}H_{1}]$ benzyl)aniline ((*S*)-**9**, 61 mg, 46%) as a yellow oil; 91% ee by ${}^{2}H{}^{1}H$ NMR analysis with PBLG in CHCl₃.

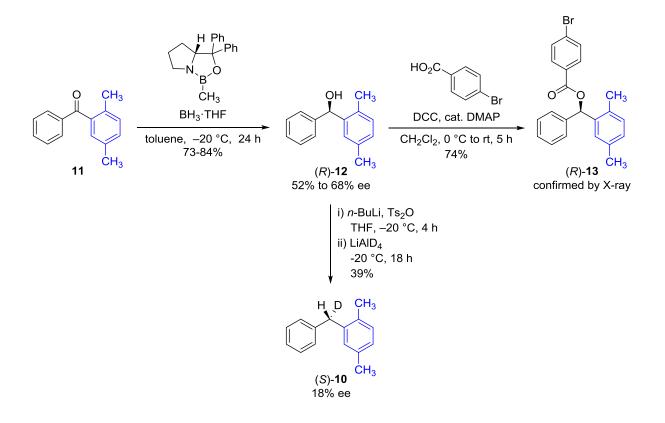

In a sealable vial, under argon atmosphere, were successively added (*R*)-7-[${}^{2}H_{1}$]benzyl fluoride (80 mg, 0.720 mmol, 1.0 equiv), freshly ground 1,1,1tris(hydroxymethyl)propane (106 mg, 1.1 equiv) and aniline (131 µL, 2.0 equiv). The vial was sealed and the resulting solution was stirred at 100 °C for 24 h. The reaction was quenched with 1 M Na₂CO₃ and extracted with Et₂O (3×). The combined organic extracts were washed with brine, dried with MgSO₄, filtered and evaporated under reduced pressure. The crude product was purified by silica gel chromatography using hexanes/ethyl acetate (98:2) as the eluent to yield (*S*)-*N*-(7-[${}^{2}H_{1}$]benzyl)-*N*-methyl-1phenylmethanamine ((*S*)-**9**, 33 mg, 25%) as a yellow oil; 89% ee by ${}^{2}H{}^{1}H{}$ NMR analysis with PBLG in CHCl₃.

(S)-2-(7-[²H₁]Benzyl)-1,4-dimethylbenzene (10)


H D

¹H NMR (500 MHz, CDCl₃) δ (ppm) = 7.32 – 7.26 (m, 2H), 7.23 – 7.18 (m, 1H), 7.17 – 7.13 (m, 2H), 7.08 (d, J = 7.6 Hz, 1H), 6.99 (d, J

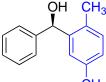

 1 = 7.6 Hz, 1H), 6.96 (s, 1H), 3.97 – 3.94 (m, 1H), 2.31 (s, 3H), 2.22 (s, 3H); 13 C NMR (101 MHz, CDCl₃) δ (ppm) = 140.6, 138.8, 135.49, 135.48, 133.6, 130.9, 130.32, 130.31, 128.83, 128.5, 127.23, 127.22, 125.99, 125.98, 39.2 (t, *J* = 19.1 Hz), 21.1, 19.3; IR (ATR, ZnSe) v (cm⁻¹) = 3024, 2920, 1493, 1449, 1030, 809, 697; HRMS-APPI *m/z* calcd for C₁₅H₁₅D [M*]+ 197.1309, found 197.1310.


To a sealable vial were successively added (*R*)-7-[${}^{2}H_{1}$]-benzyl fluoride (100 mg, 0.900 mmol, 1.0 equiv), *p*-xylene (555 µL, 5.0 equiv) and HFIP (3.6 mL). The resulting solution was stirred for 18 h at room temperature. The reaction was quenched with H₂O and extracted with CH₂Cl₂ (3×). The combined organic extracts were washed with brine, dried with MgSO₄, filtered and evaporated under reduced pressure. The crude product was purified by silica gel chromatography using hexanes/ethyl acetate (99:1) as the eluent to yield (*S*)-2-(7-[${}^{2}H_{1}$]benzyl)-1,4-dimethylbenzene ((*S*)-10, 156 mg, 88%) as a colorless oil; 24% ee by ${}^{2}H_{1}^{1}H_{1}$ NMR analysis with PBLG in CHCl₃.



To a stirred solution of (*R*)-7-[²H₁]benzyl fluoride (100 mg, 0.900 mmol, 1.0 equiv) in dry CH₂Cl₂ (90% of the volume required for substrate concentration of 0.25 M) were added *p*-xylene (555 μ L, 5.0 equiv) and HFIP (10% of the volume required for substrate concentration of 0.25 M, resulting in a 9:1 mixture of CH₂Cl₂/HFIP). Finally, TFA (0.2 M in CH₂Cl₂, 5 mol % of TFA) was added. The resulting solution was stirred for 3 h at room temperature. The reaction was quenched with H₂O and extracted with CH₂Cl₂ (3x). The combined organic extracts were washed with brine, dried with MgSO₄, filtered and evaporated under reduced pressure. The crude product was purified by silica gel chromatography using hexanes/ethyl acetate (99:1) as the eluent to yield (*S*)-2-(7-[²H₁]-benzyl)-1,4-dimethylbenzene ((*S*)-**10**, 100 mg, 56%) as a colorless oil; 19% ee by ²H{¹H} NMR analysis with PBLG in CHCl₃.

To a stirred solution of (*R*)-7-[${}^{2}H_{1}$]benzyl fluoride (100 mg, 0.900 mmol, 1.0 equiv) at 0 °C in dry CH₂Cl₂ (90% of the volume required for substrate concentration of 0.25 M) were added *p*-xylene (555 µL, 5.0 equiv) and HFIP (10% of the volume required for substrate concentration of 0.25 M, resulting in a 9:1 mixture of CH₂Cl₂/HFIP). Finally, TFA (0.2 M in CH₂Cl₂, 5 mol % of TFA) was added. The resulting solution was stirred for 3 h at 0 °C. The reaction was quenched with H₂O and extracted with CH₂Cl₂ (3x). The combined organic extracts were washed with brine, dried with MgSO₄, filtered and evaporated under reduced pressure. The crude product was purified by silica gel chromatography using hexanes/ethyl acetate (99:1) as the eluent to yield (*S*)-2-(7-[${}^{2}H_{1}$]-benzyl)-1,4-dimethylbenzene ((*S*)-10, 91 mg, 51%) as a colorless oil; 28% ee by ${}^{2}H_{1}^{1}H$ NMR analysis with PBLG in CHCl₃.



(2,5-Dimethylphenyl)(phenyl)methanone (11)

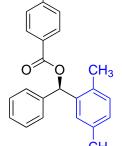
In a 50 mL round-bottomed flask with a magnetic stirrer, benzoyl chloride (826 µL, 7.11 mmol, 1 equiv) and p-xylene (1.75 mL, CH₃ 14.22 mmol, equiv) were dissolved in 15 mL CH₂Cl₂. AlCl₃ (950 mg,

7.11 mmol, 1 equiv) was added and the reaction was stirred for 18 hours at 21 °C. The mixture was diluted with H_2O and additional CH_2CI_2 , extracted with CH_2CI_2 (2x) and the organic phases were washed with H_2O (2x), brine, then dried over MgSO₄, filtered and evaporated. After silica gel chromatography using hexanes/EtOAc (97/3), the title compound (1.30 g, 87%) was isolated as a slightly orange liquid. Spectral data were identical to those previously reported [2].

CH₃ (*R*)-(2,5-Dimethylphenyl)(phenyl)methanol ((*R*)-12)

ΗD

In a 100 mL round-bottomed flask equipped with a magnetic stir bar, (R)-2-methyl-CBS-oxazaborolidine (1 M in PhMe, 830 μL, CH_3 0.83 mmol, 0.15 equiv) was mixed with BH₃•THF (1 M in THF, 11.03 2 equiv) at -20 °C. А solution of 11.03 mL, mmol, (2,5dimethylphenyl)(phenyl)methanone (1,16 g, 5.52 mmol, 1 equiv) in PhMe (38 mL) was then slowly added at this temperature. The reaction was stirred at -20 °C for 18 h, and then the solvents were evaporated under reduced pressure. The crude mixture was diluted in CH₂Cl₂, washed with water, dried over Na₂SO₄, filtered and concentrated. After silica gel chromatography using hexanes/EtOAc (90/10), the title compound (989 mg, 84%) was isolated as a white solid. Spectral data were identical to those previously reported [2]. HPLC analysis (OJ-H, hexanes/iPrOH (95/5),

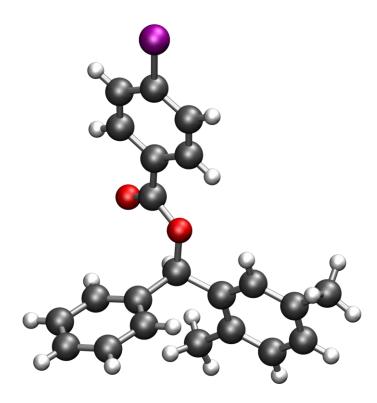

0.5 mL/min, 254.4 nm) t = 23.72 min (24.25%), 25.73 min (75.75%).

CH_3 (S)-2-(7-[²H₁]Benzyl)-1,4-dimethylbenzene ((S)-10)

In a glass vessel equipped with a magnetic stir bar, a solution of (R)-(2,5-dimethylphenyl)(phenyl)methanol (150 mg, 0.71 mmol, CH_3 1 equiv) in 3 mL THF was prepared under argon atmosphere, then cooled to -20 °C. n-BuLi (1.52 M in hexanes, 474 µL, 0.71 mmol, 1 equiv) was added dropwise and the mixture was stirred at -20 °C for one hour. Ts₂O (288 mg,

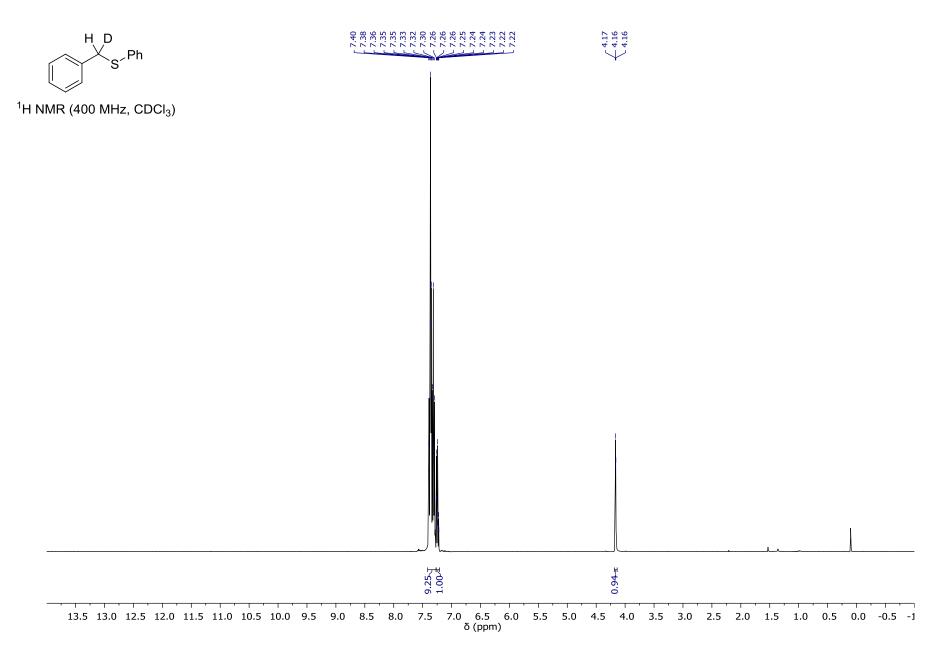
0.792 mmol, 1.1 equiv) was added and 3 mL THF was used to wash the vessel walls. The reaction was stirred at -20 °C for 4 h, then LiAlD₄ (90% purity, 66 mg, 1.44 mmol, 2 equiv) was added. The full mixture was stirred for 18 h at -20 °C, then quenched with NaOH (2 M). The slurry was extracted with CH₂Cl₂ (3×) and the combined organic extracts were washed with water, dried over MgSO₄, filtered and evaporated. Following silica gel chromatography using 100% hexanes, the pure product (54 mg, 39%) was isolated as a colorless liquid. Spectral data is as described above; $[\alpha]_D^{21} = -0.54$ ° (c = 0.97, CHCl₃); 18% ee by ²H{¹H} NMR analysis with PBLG in CHCl₃, as same enantiomer for **10** synthesised from (*R*)-**1** (See Supporting Information File 2 for spectrum).

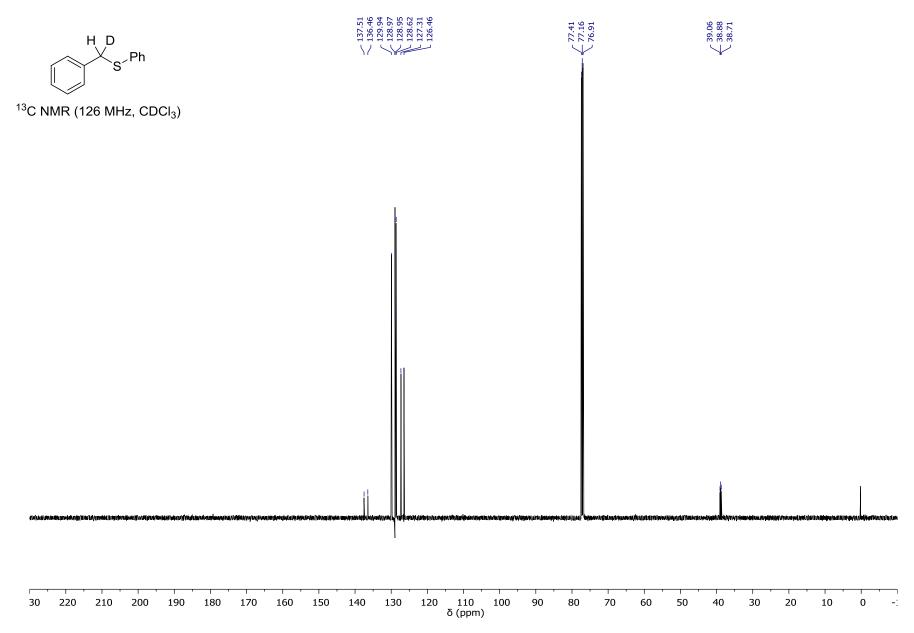
(*R*)-(2,5-dimethylphenyl)(phenyl)methyl 4-bromobenzoate ((*R*)-13)

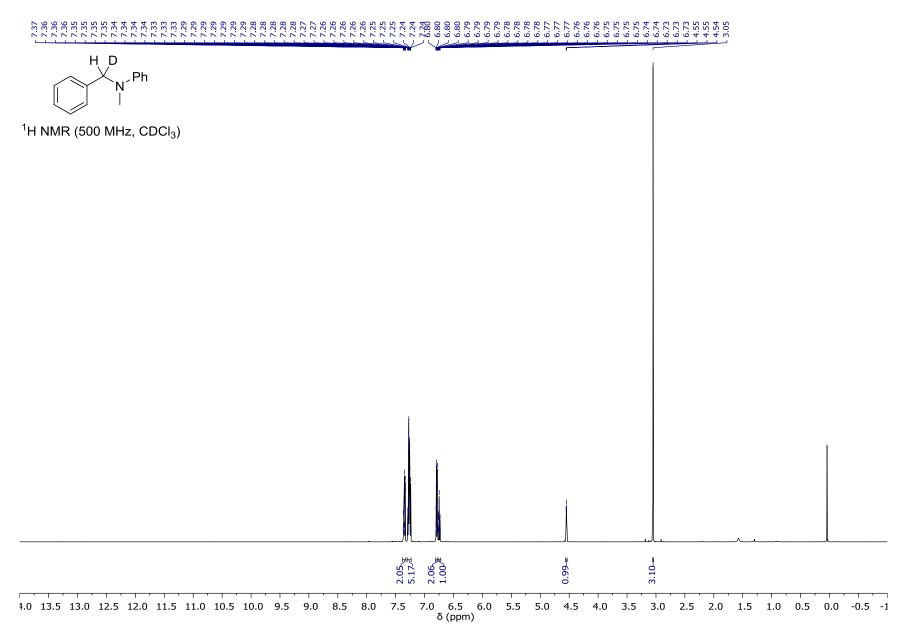

Br

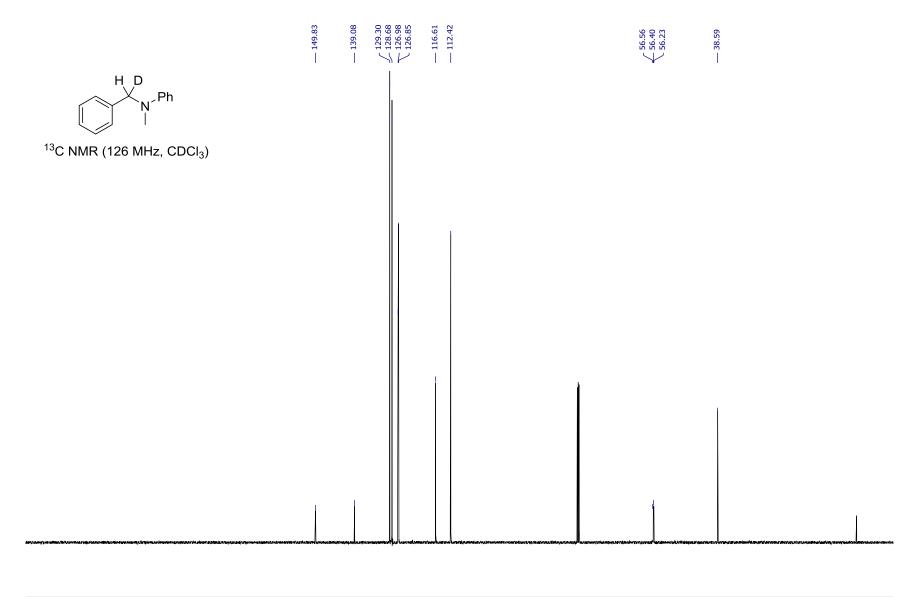
In a glass vessel, 4-bromobenzoic acid (53 mg, 0.264 mmol, 1.1 equiv), DMAP (2 mg, 0.012 mmol, 5 mol %) and (R)-(2,5dimethylphenyl)(phenyl)methanol (50 mg, 0.24 mmol, 1 equiv) were dissolved in 1 mL CH₂Cl₂. This solution was cooled to 0 °C and CH₃ DCC (57 mg, 0.276 mmol, 1.15 equiv) was added. The reaction was

stirred 5 min at 0 °C, then allowed back to room temperature and stirred for an additional 5 h. The reaction mixture was diluted with more CH_2Cl_2 and this organic phase was washed with HCI (10%, 2×), sat. NaHCO₃, and then H₂O. It was finally dried over MgSO₄, filtered and concentrated. The desired compound (70 mg, 74%) was isolated as white needles by column chromatography using hexanes/EtOAc (95/5). ¹H NMR (400 MHz, CDCl₃) δ 2.31 (s, 6H), 7.03-7.08 (m, 2H), 7.24 (m, 2H), 7.28-7.35 (m, 5H), 7.60 (d, *J* = 8.5 Hz, 2H), 7.98 (d, *J* = 8.5 Hz), 2H); ¹³C NMR (100 MHz, CDCl₃) δ 19.1, 21.2, 75.3, 127.4, 127.7, 127.9, 128.3, 128.5, 128.9, 129.1, 130.7, 131.3, 131.8, 132.8, 135.6, 137.6, 139.3, 164.9; IR (ATR, ZnSe) v = 2920, 1713, 1264, 1098, 1009, 812, 767, 704 cm⁻¹; HRMS-ESI calcd for C₂₂H₁₉BrNaO₂ [M+Na]⁺ 417.0461, found 417.0441.

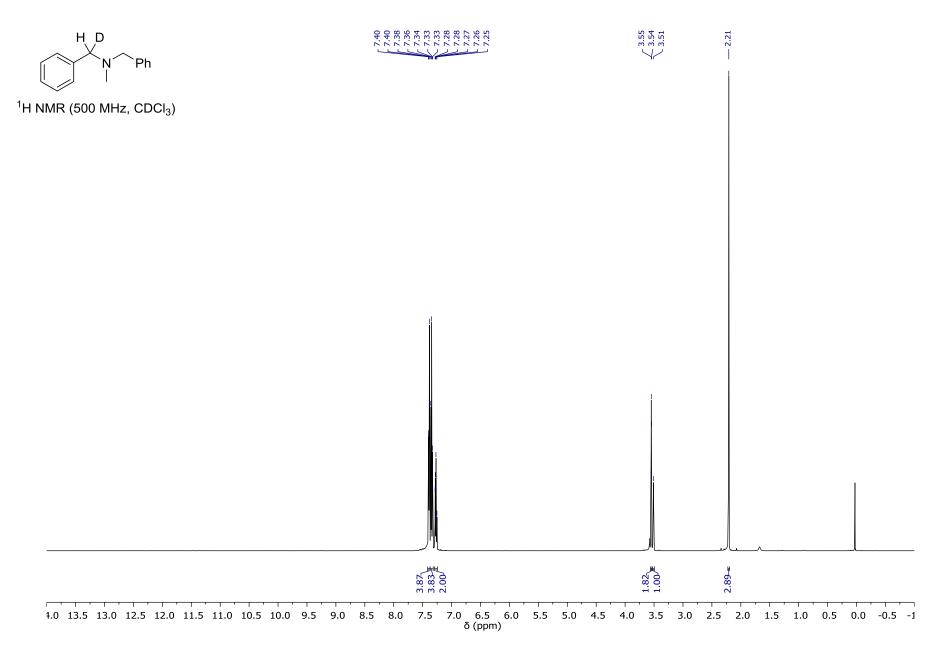

Crystal data and structure refinement for 13.

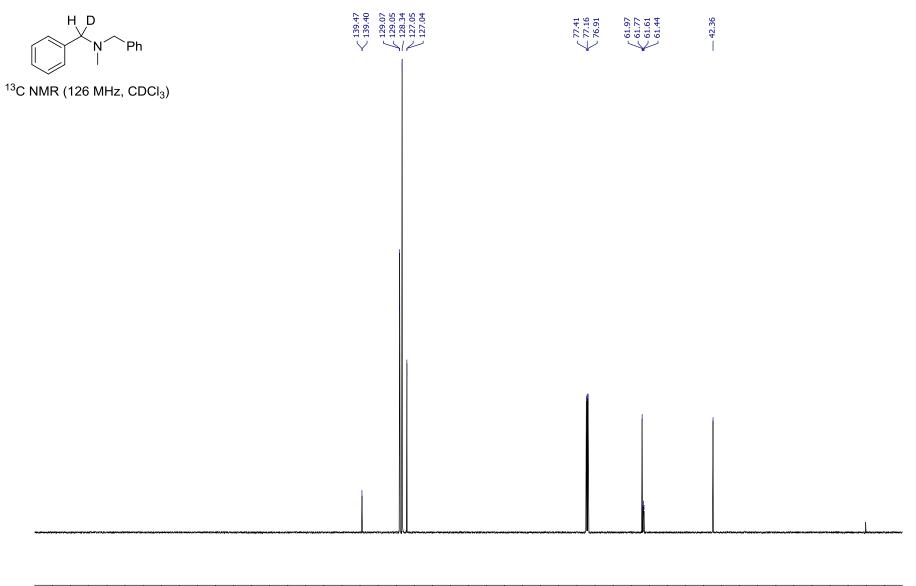

$C_{22}H_{19}BrO_2$
150(2) K
0.71073 Å
Orthorhombic
P 21 21 21
a = 7.1645(5) Å
b = 13.8680(10) Å
c = 18.0569(14) Å
1794.1(2) Å ³
4
1.463 mg/m ³
808
0.520 x 0.380 x 0.260 mm ³
1.852 to 30.540°
-10<=h<=10, -19<=k<=19, -25<=l<=25
23036
5481 [R(int) = 0.0279]
100.0 %
Semi-empirical from equivalents
0.549 and 0.364
Full-matrix least-squares on F2
5481 / 0 / 228
1.024
R1 = 0.0269, wR2 = 0.0648
R1 = 0.0314, wR2 = 0.0663
0.011(3)
0.594 and -0.482 e.Å ⁻³

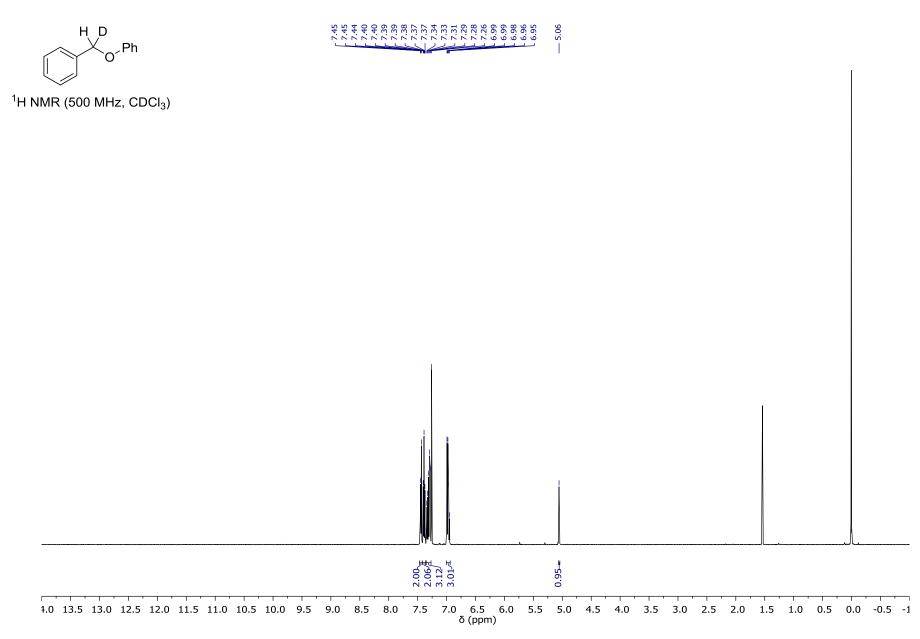


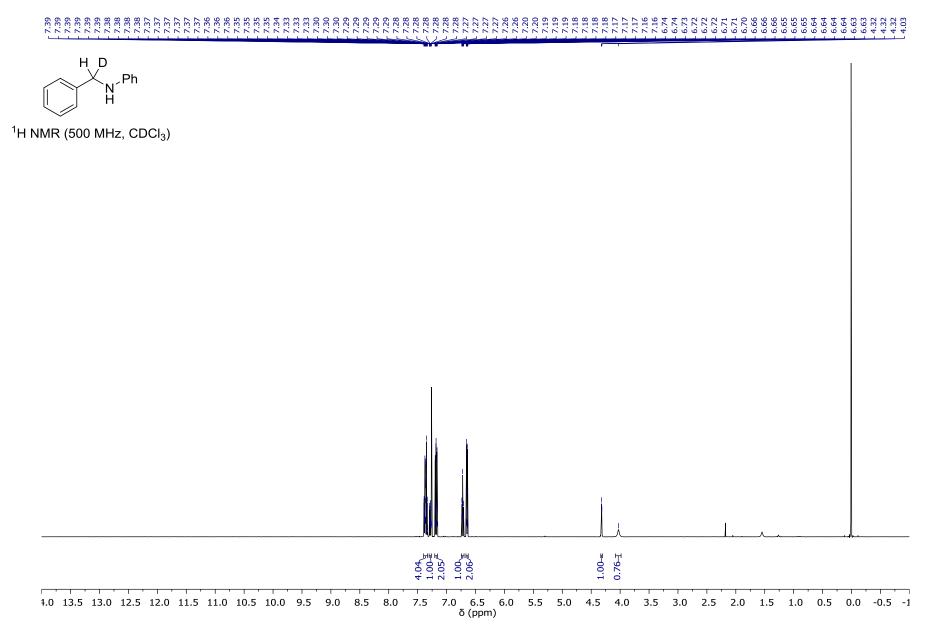

References

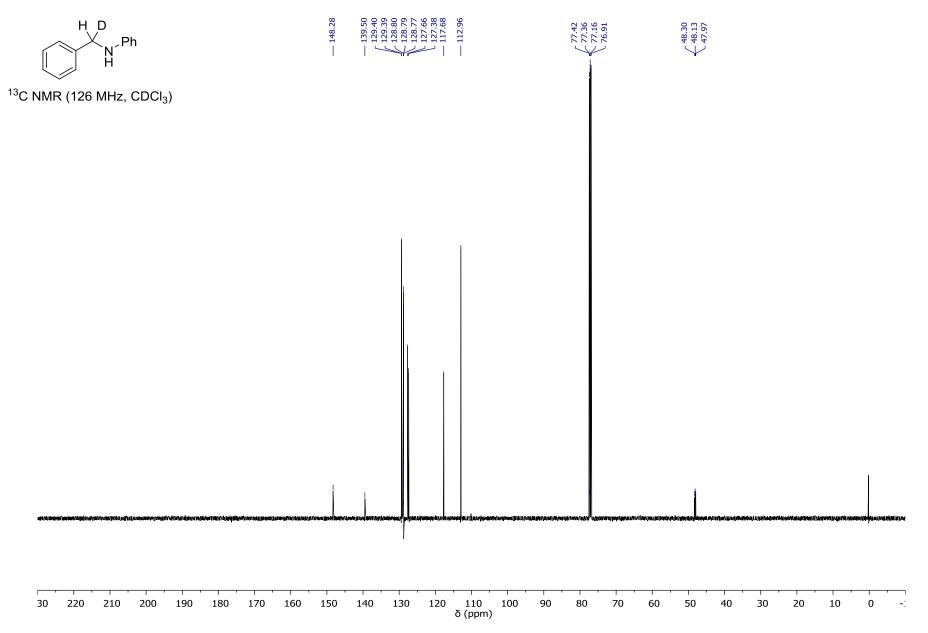
- 1. Velasco, R.; Feberero, C.; Sanz, R. Org. Lett. 2015, 17, 4416–4419.
- 2. Desroches, J.; Champagne, P. A.; Benhassine, Y.; Paquin, J.-F. Org. Biomol. Chem. 2015, 13, 2243.

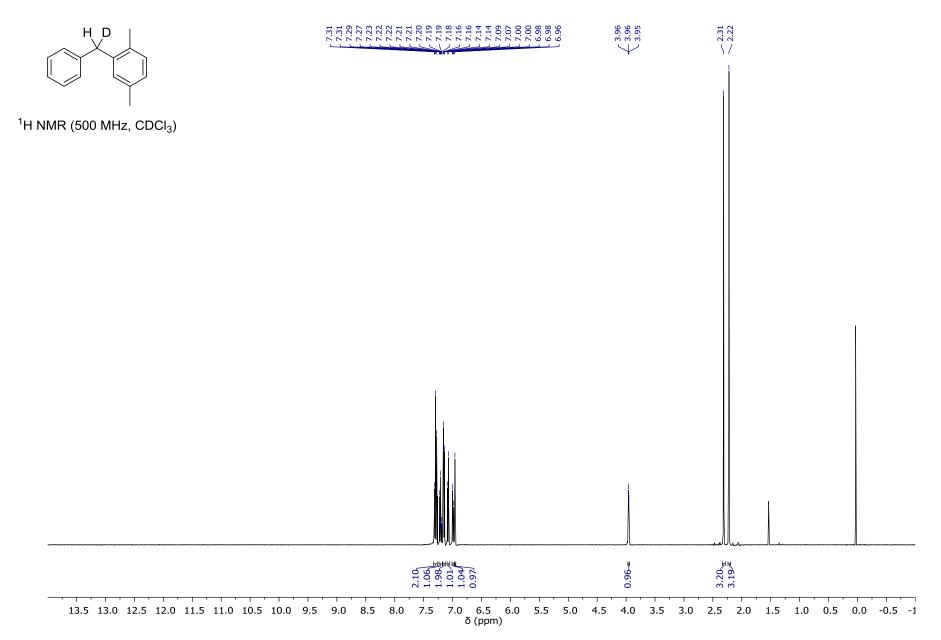


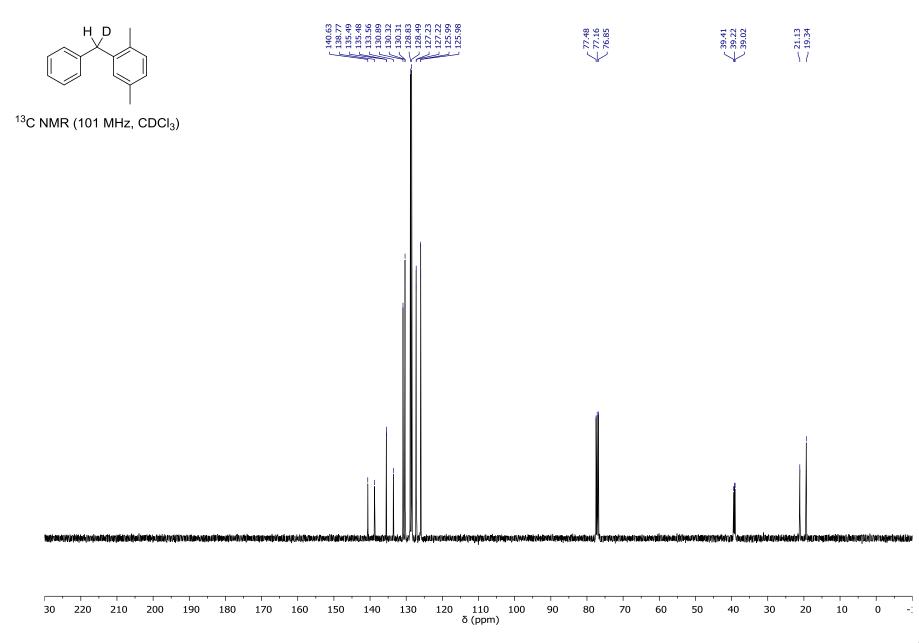





110 100 δ (ppm) 30 220 210 200 190 180 170 160 150 140 130 -:






110 100 δ (ppm) 30 220 210 200 190 180 170 160 150 140 130 -:

