Supporting Information

for

Annulation of a 1,3-dithiole ring to a sterically hindered o-quinone core. Novel ditopic redox-active ligands

Sergey V. Norkov, Anton V. Cherkasov, Andrey S. Shavyrin, Maxim V. Arsenyev, Viacheslav A. Kuropatov and Vladimir K. Cherkasov

Beilstein J. Org. Chem. 2021, 17, 273-282. doi:10.3762/bjoc.17.26

Experimental and analytical data

Contents

1. Procedures for synthesis of compounds S2
2. X-ray diffractometry data S5
3. EPR spectroscopy data and EPR spectra S13
4. Electrochemistry data S19
5. UV-vis spectra S22
6. NMR spectra S25

Procedures for synthesis of compounds

4,7-Di-tert-butyl-2-thioxobenzo[d][1,3]dithiole-5,6-dione (6a) Solution of sodium tritiocarbonate (1.39 g, 9 mmol) in 15 mL DMF was added to the solution 3,6-di-tert-butyl-4,5-dichloro-o-quinone $\mathbf{2}$ ($2.60 \mathrm{~g}, 9 \mathrm{mmol}$) in 15 mL of DMF dropwise at $0^{\circ} \mathrm{C}$. Then the mixture was allowed to warm to room temperature and the color of the solution immediately turned from red to red-brown. After that the mixture was stirred for another 15 minutes, and then the solution is poured into cool water. The product was extracted from an aqueous solution with diethyl ether ($5 \times 45 \mathrm{~mL}$). The ether solution is washed with water ($5 \times 50 \mathrm{~mL}$) and then solvent was removed on a rotary evaporator. The product is recrystallized from acetone-diethyl ether (1: 3) mixture at $-18{ }^{\circ} \mathrm{C}$. Red-brown crystals. ($2.10 \mathrm{~g}, 73 \%$); m.p. $140^{\circ} \mathrm{C}$; Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~S}_{3}$: $\mathrm{C}, 55.18$; H, 5.56; S, 29.46. Found: C, $55.94 ; \mathrm{H}, 5.40 ; \mathrm{S}, 30.21 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 1.40(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}$ (CDCl $\left.{ }_{3}, 100 \mathrm{MHz}\right): \delta 30.1,37.9,141.6,153.1,184.6,210.3$; IR (cm^{-1}): 1665, 1634, 1395, 1365, 1290, 1267, 1218, 1164, 1094, 1082, 1026, 989, 914, 835, 816, 764, 692, 627, 592, 528

4,7-Di-tert-butyl-2-oxobenzo[d][1,3]dithiole-5,6-dione. (3a) $\mathrm{Hg}(\mathrm{OAc})_{2}$ was added to the solution 4,7-di-tert-butyl-2-thioxobenzo[d][1,3]dithiole-5,6-dione ($326 \mathrm{mg}, 1 \mathrm{mmol}$) in 30 mL of mixture methanol-acetic acid (1:1) and stirred for 4 h at rt . Then the mixture was filtered and solvent was removed on a rotary evaporator. The product is recrystallized from diethyl ether at $-18^{\circ} \mathrm{C}$. ($198 \mathrm{mg}, 64 \%$); m.p. $84-85^{\circ} \mathrm{C}$; Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{~S}_{2}$: C, 58.04; $\mathrm{H}, 5.84 ; \mathrm{S}, 20.66$. Found: $\mathrm{C}, 57.96 ; \mathrm{H}, 5.77 ; \mathrm{S}, 20.93 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right.$): $\delta 1.37(\mathrm{~s}, 18 \mathrm{H})$; ${ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 30.1,37.7,144.7,146.1,186.3,210.3 ; \mathrm{IR}\left(\mathrm{cm}^{-1}\right): 1832$, $1755,1734,1652,1600,1507,1393,1360,1285,1222,1083,1028,928,832,685,648,575$

2-(4,7-Di-tert-butyl-5,6-dioxo-5,6-dihydrobenzo[d][1,3]dithiole-2-ylidene)malononitrile (6b) Malononitrile ($132 \mathrm{mg}, 2 \mathrm{mmol}$) in 10 mL of methanol was added dropwise at vigorous stirring to sodium methoxide (108 $\mathrm{mg}, 2 \mathrm{mmol}$) solution in methanol (5 mL) and then stirred for 30 minutes. Then carbon disulfide ($152 \mathrm{mg}, 2$ mmol) was slowly added dropwise and stirred for another 30 minutes. After that another portion of sodium methoxide ($108 \mathrm{mg}, 2 \mathrm{mmol}$) in 5 mL of methanol was slowly added and then stirred also for 30 minutes. Finally, the color of the solution turned to a light yellow. A solution of 3,6-di-tert-butyl-4,5-dichlorocyclohex3,5 -diene-1,2-dione ($2,578 \mathrm{mg}, 2 \mathrm{mmol}$) in 10 mL of methanol was added to the reaction mixture and left stirred for 10 hours. The solvent was removed under vacuum and 20 mL of diethyl ether was added, the mixture was filtered, 15 mL of hexane was added to the mother liquor and set to crystallize. Red-brown crystals. ($307 \mathrm{mg}, 43 \%$); m.p. $151{ }^{\circ} \mathrm{C}$; Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}$: C, $60.31 ; \mathrm{H}, 5.06 ; \mathrm{N}, 7.81 ; \mathrm{S}, 17.89$. Found: $\mathrm{C}, 60.01 ; \mathrm{H}, 4.95 ; \mathrm{N}, 7.66 ; \mathrm{S}, 17.44 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 1.44(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}): \delta 30.1,38.1,71.0,111.1,144.9,146.3,173.1,183.7$; IR (cm^{-1}): 2220, 1666, 1641, 1395, 1365, 1288, $1222,1161,1094,1026,982,905,762,615,526$.

4,7-Di-tert-butyl-2-(3,5-di-tert-butyl-4-oxocyclohexa-2,5-dien-1-ylidene)benzo[d][1,3]dithiole-5,6-dione

 (6 c) 60% suspension of NaH in mineral oil ($136 \mathrm{mg}, 3.4 \mathrm{mmol}$) was washed with dry diethyl ether (10 mL) and resulting solid was suspended in 20 mL of dry THF. To this suspension was added to 353 mg (1.7 mmol) of 2,6-di-tert-butylphenol in 5 mL of THF, and the mixture was allowed to react at room temperature for 10 hours. After that the solution turned yellow-green color. Solution of carbon disulfide ($131 \mathrm{mg}, 1.7 \mathrm{mmol}$) in 10 mL THF was added dropwise to phenoxide salt mixture at $0^{\circ} \mathrm{C}$ and then stirred for 2 hours. 4,5-Dichloro-3,6-di-tert-butyl-o-quinone $\mathbf{2}(500 \mathrm{mg}, 1.7 \mathrm{mmol})$ in 10 mL of THF was added in portions and stirred for 2 h . After that the solvent was removed under vacuum. The precipitate was dissolved in diethyl ether and thenred solution was filtered. The filtrate was evaporated under vacuum. The product was isolated after column chromatography in a mixture of hexane-toluene (4:1). Violet crystals. ($389 \mathrm{mg}, 46 \%$); m.p. $229^{\circ} \mathrm{C}$ (decomposes); Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{38} \mathrm{O}_{3} \mathrm{~S}_{2}$: C, 69.84; H, 7.68; S, 12.86. Found: C, 69.99; H, 7.57; S, 12.44; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 1.34(\mathrm{~s}, 18 \mathrm{H}), 1.49(\mathrm{~s}, 18 \mathrm{H}), 7.15(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 29.4$, $30.2,35.6,37.9,123.0,126.0,141.1,144.4,147.8,148.8,183.3,185.7$ IR: 1648, 1629, 1605, 1377, 1364, 1331, 1294, 1253, 1221, 1100, 1085, 1029, 978, 891, 881, 838, 818, 766, 722, 674, 534.

4,7-Di-tert-butyl-2-(2,4-dioxopentan-3-ylidene)benzo[d][1,3]dithiole-5,6-dione (6d) and 8,8-diacetyl-2,5-di-tert-butyl-7-thiabicyclo[4.2.0]octa-1,5-diene-3,4-dione (7). A 60% suspension of NaH in mineral oil (160 $\mathrm{mg}, 4 \mathrm{mmol}$) was washed with dry diethyl ether (10 mL) and resulting solid was suspended in 20 mL of dry THF. This suspension was added dropwise to 200 mg (2 mmol) of acetylacetone in 10 mL THF at vigorous stirring and then stirred for 1 h . Then solution of carbon disulfide ($152 \mathrm{mg}, 2 \mathrm{mmol}$) in 10 mL of THF was added dropwise at $0^{\circ} \mathrm{C}$ and stirred for 30 minutes. After that solution of 3,6-di-tert-butyl-4,5-dichlorocyclohex-3,5-diene-1,2-dione ($\mathbf{2}, 578 \mathrm{mg}, 2 \mathrm{mmol}$) in 10 mL of THF was added to the reaction mixture and left for 10 hours. The solvent was removed under vacuum and 10 mL of acetone was added, the mixture was filtered and products $\mathbf{7}$ and $\mathbf{8}$ were separated by column chromatography in a mixture of hexane-acetone (10:1).

4,7-Di-tert-butyl-2-(2,4-dioxopentan-3-ylidene)benzo[d][1,3]dithiole-5,6-dione (6d) Red-brown crystals. ($102 \mathrm{mg}, 13 \%$); m.p. $159^{\circ} \mathrm{C}$; Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{~S}_{2}$: C, $61.20 ; \mathrm{H}, 6.16 ; \mathrm{S}, 16.34$. Found: C, $60.92 ; \mathrm{H}, 5.92$; s, $16.66 ;{ }^{1} \mathrm{H}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 1.45(\mathrm{~s}, 18 \mathrm{H}) ; 2.53(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 30.2,30.6,37.5$, 128.4, 111.1, 143.0, 150.2, 160.9, 183.7, 195.4; IR (cm^{-1}): 1696, 1664, 1627, 1449, 1386, 1304, 1278, 1211, 1171, 1113, 1021, 998, 902, 816, 762, 606

8,8-Diacetyl-2,5-di-tert-butyl-7-thiabicyclo[4.2.0]octa-1,5-diene-3,4-dione (7) Red crystals. (56 mg, 8\%); m.p. $165{ }^{\circ} \mathrm{C}$; Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}, 65.49 ; \mathrm{H}, 6.94 ; \mathrm{S}, 9.20$. Found: C, 65.33; H, 7.04; S, 9.80; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3} ; 400 \mathrm{MHz}$): $\delta 1.27(\mathrm{~s}, 9 \mathrm{H}), 1.19(\mathrm{~s}, 9 \mathrm{H}), 2.53(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 28.7,29.026 .7$, 36.1, 36.6, 74.5, 138.7, 144.1, 148.4, 151.0, 160.9, 177.3, 180.8, 198.7; IR (cm ${ }^{-1}$): 1708, 1687, 1665, 1648, $1598,1535,1482,1358,1294,1208,1174,1069,1023,988,949,845,824,787,770,721,647,617,565$.

Compound 8. A 60% suspension of NaH in mineral oil ($160 \mathrm{mg}, 4 \mathrm{mmol}$) was washed with dry diethyl ether $(10 \mathrm{~mL})$ and resulting solid was suspended in 20 mL of dry THF. This suspension was added dropwise to 416 $\mathrm{mg}(2 \mathrm{mmol})$ of hexafluoroacetylacetone in 10 mL THF at vigorous stirring and then stirred for 1 h . Then solution of carbon disulfide ($152 \mathrm{mg}, 2 \mathrm{mmol}$) in 10 mL of THF was added dropwise at $0^{\circ} \mathrm{C}$ and stirred for 30 minutes. After that solution of 3,6-di-tert-butyl-4,5-dichlorocyclohex-3,5-diene-1,2-dione (2,578 mg, 2 mmol) in 10 mL of THF was added to the reaction mixture and reflux for 10 hours. Cooling of the reaction mixture to $-18{ }^{\circ} \mathrm{C}$ resulted in deep red crystals suitable for X -ray study. ($379 \mathrm{mg}, 47 \%$); m.p. $164{ }^{\circ} \mathrm{C}$; Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{Cl}_{2} \mathrm{~F}_{6} \mathrm{O}_{4} \mathrm{Na}: \mathrm{C}, 43.95 ; \mathrm{H}, 3.69$. Found: C, 43.15; $\mathrm{H}, 3.70$;

4,8-Di-tert-butyl-2,2,2-trimetoxy-2-[1,3]dithiole[4',5':4,5]benzo[1,2-d][1,3,2]dioxophosphol-6-thione (9)

Trimethyl phosphite ($124 \mathrm{mg}, 1 \mathrm{mmol}$) was added dropwise to the solution 4,7-di-tert-butyl-2-thioxobenzo[d][1,3]dithiole-5,6-dione ($326 \mathrm{mg}, 1 \mathrm{mmol}$) in 10 mL of toluene and then stirred for 1 h . After that solvent was removed on rotary evaporator. Colorless powder was isolated after recrystallization from methanol. ($440 \mathrm{mg}, 98 \%$); Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{O}_{5} \mathrm{PS}_{3}: \mathrm{C}, 47.98 ; \mathrm{H}, 6.04 ; \mathrm{P}, 6.87 ; \mathrm{S}, 21.35$. Found: C, 47.57; H, $5.87 ; \mathrm{S}, 20.90 ;{ }^{1} \mathrm{H}$ NMR (CDCl ${ }_{3}, 400 \mathrm{MHz}$): $\delta 1.57(\mathrm{~s}, 18 \mathrm{H}), 3.53(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta$
30.86, 37.79, 128.2, 136.1, 143.2, 209.7; ${ }^{31}$ P\{1H\} NMR (CDCl ${ }_{3}, 162 \mathrm{MHz}$): $\delta 11.6$; IR $\left(\mathrm{cm}^{-1}\right): 1675,1463,1403$, $1373,1270,1244,1215,1164,1065,1030,980,926,904,896,836,761,723,667,635,585,534,506,468$

4,7-Di-tert-butyl-5,6-dihydroxy-benzo[d][1,3]dithiole-2-thione. (10) Solution of NaBH_{4} ($0.116 \mathrm{mg}, 3 \mathrm{mmol}$) in 15 mL of methanol was added dropwise to the solution 4,7-di-tert-butyl-2-thioxobenzo[d][1,3]dithiole5,6 -dione ($326 \mathrm{mg}, 1 \mathrm{mmol}$) in 15 mL methanol. The color of solution immediately turned from red to lightyellow. The mixture stirred for another 30 minutes, then solvent was removed on a rotary evaporator. Precipitate was washed with diethyl ether and solvent was removed on a rotary evaporator. Bright-yellow powder ($308 \mathrm{mg}, 94 \%$); Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{~S}_{3}$: C, $54.84 ; \mathrm{H}, 6.14 ; \mathrm{S}, 29.28$. Found: C, $55.12 ; \mathrm{H}, 6.22 ; \mathrm{S}$, 29.55; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): $\delta 1.50(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}\left(\mathrm{CDCl}_{3} ; 100 \mathrm{MHz}\right): \delta 31.0,37.2,121.7,127.6$, 154.0, 207.6; IR (cm^{-1}): 3500, 1705, 1615, 1543, 1415, 1392, 1379, 1366, 1266, 1198, 1162, 1047, 950, 855, 840, 816, 796, 744, 725,664, 603, 510

X-ray diffractometry data

Figure S1. The molecular structure of 6a. The thermal ellipsoids are given at 30% probability level. Hydrogen atoms are omitted for clarity.

Figure S2. The molecular structure of 6b. The thermal ellipsoids are given at 30% probability level. Hydrogen atoms are omitted for clarity.

Figure S3. The molecular structure of $\mathbf{6 c}$. The thermal ellipsoids are given at 30% probability level. Hydrogen atoms are omitted for clarity.

Figure S4. The molecular structure of 6d. The thermal ellipsoids are given at 30\% probability level. Hydrogen atoms are omitted for clarity.

Figure S5. The molecular structure of 7. The thermal ellipsoids are given at 30\% probability level. Hydrogen atoms are omitted for clarity.

Figure S6. The fragment of crystal packing of 8. The thermal ellipsoids are given at 10\% probability level. Methyl groups of tert-butyl substituents and hydrogen atoms are omitted for clarity.

Figure S7. The molecular structure of 9. The thermal ellipsoids are given at 30\% probability level. Hydrogen atoms are omitted for clarity.

Table S1. Selected bond lengths (\AA) and angles (deg) in 6a-d and 7-9.

	6a	6b	6c	6d	7	8	9
Bond lengths							
$\mathrm{C}=0$	$\begin{aligned} & 1.213(2) \\ & 1.214(2) \end{aligned}$	$\begin{aligned} & 1.210(4) \\ & 1.204(4) \end{aligned}$	$\begin{aligned} & 1.220(7) \\ & 1.224(6) \end{aligned}$	1.222(3)	$\begin{aligned} & 1.206(4) \\ & 1.208(4) \end{aligned}$	1.209(7)	$\begin{aligned} & 1.378(2) \\ & 1.347(2) \end{aligned}$
$\mathrm{C}(1)-\mathrm{C}(2)$	1.529(2)	1.530(5)	1.51(2)		1.560(5)		1.404(2)
$\begin{aligned} & C(1)-C(1 A)\{6 d, \\ & 8\} \end{aligned}$				1.512(5)		1.49(2)	
$\begin{aligned} & C(1)-C(6) \\ & C(2)-C(3) \end{aligned}$	$\begin{aligned} & 1.473(2) \\ & 1.475(2) \end{aligned}$	$\begin{aligned} & 1.478(4) \\ & 1.476(4) \end{aligned}$	$\begin{aligned} & 1.480(6) \\ & 1.487(6) \end{aligned}$		$\begin{aligned} & 1.492(5) \\ & 1.450(5) \end{aligned}$		$\begin{aligned} & 1.385(2) \\ & 1.388(2) \end{aligned}$
$\begin{aligned} & C(1)-(C 2)\{6 d, \\ & 8\} \end{aligned}$				1.461(3)		1.454(8)	
$\begin{aligned} & C(3)-C(4) \\ & C(5)-C(6) \end{aligned}$	$\begin{aligned} & 1.369(2) \\ & 1.359(2) \end{aligned}$	$\begin{aligned} & 1.358(4) \\ & 1.356(4) \end{aligned}$	$\begin{aligned} & 1.365(4) \\ & 1.366(4) \end{aligned}$		$\begin{aligned} & 1.344(5) \\ & 1.341(5) \end{aligned}$		$\begin{aligned} & 1.422(2) \\ & 1.424(2) \end{aligned}$
$\begin{aligned} & C(2)-C(3)\{6 d, \\ & 8\} \end{aligned}$				1.358(4)		1.335(9)	
$\mathrm{C}(4)-\mathrm{C}(5)$	1.497(2)	1.499(4)	1.488(5)		1.471(5)		1.407(2)
$\begin{aligned} & C(3)-C(3 A)\{6 d, \\ & 8\} \end{aligned}$				1.487(4)		1.49(2)	
$\mathrm{C}(3)-\mathrm{Cl}(1)\{8\}$						1.710(6)	
C(4)-S(1)	1.761(2)	1.759(3)	1.744(3)	1.757(2)	1.754(4)		1.760(2)
C(5)-S(2)	1.760(2)	1.763(3)	1.748(3)	1.757(2)			1.763(2)
$\mathrm{C}(11)-\mathrm{S}(1)$	1.721(2)	1.713(3)	1.730(3)		1.866(3)		1.712(2)
$\mathrm{C}(11)-\mathrm{S}(2)$	1.720(2)	1.717(3)	1.722(3)				1.719(2)
$\mathrm{C}(8)-\mathrm{S}(1)$ \{6d\}				1.736(2)			
$\mathrm{C}(8)-\mathrm{C}(9)\{\mathbf{6 d}\}$				1.378(4)			
C(8)-O(2) \{8\}						1.233(5)	
C(10)-O(3) \{8\}						1.243(5)	
$\mathrm{C}(11)-\mathrm{S}(3)$	1.633(2)						1.649(2)
$\mathrm{C}(11)-\mathrm{C}(12)$		1.370(4)	1.381(4)				
$\mathrm{C}(15)-\mathrm{O}(3)\{6 \mathrm{c}\}$			1.229(4)				
$\mathrm{C}(5)-\mathrm{C}(11)\{7\}$					1.531(5)		
$\mathrm{C}(11)-\mathrm{C}(12)\{7\}$					1.539(5)		
$\mathrm{C}(11)-\mathrm{C}(14)\{7\}$					1.537(5)		
$\begin{aligned} & \mathrm{P}(1)-\mathrm{O}(1) \\ & \mathrm{P}(1)-\mathrm{O}(2) \end{aligned}$							$\begin{aligned} & 1.644(2) \\ & 1.730(2) \end{aligned}$
$\begin{aligned} & \mathrm{P}(1)-\mathrm{O}(3) \\ & \mathrm{P}(1)-\mathrm{O}(4) \\ & \mathrm{P}(1)-\mathrm{O}(5) \end{aligned}$							$\begin{aligned} & 1.581(2) \\ & 1.621(2) \\ & 1.586(2) \end{aligned}$
$\begin{aligned} & \mathrm{Na}(1)-\mathrm{O}(1) \\ & \mathrm{Na}(1)-\mathrm{O}(2) \\ & \mathrm{Na}(1)-\mathrm{O}(3) \\ & \mathrm{Na}(1)-\mathrm{O}(2 \mathrm{~A}) \\ & \mathrm{Na}(1)-\mathrm{O}(3 \mathrm{~B}) \end{aligned}$							

$\mathrm{Na}(1)-\mathrm{F}(1 \mathrm{~A})$ $\mathrm{Na}(1)-\mathrm{F}(6 \mathrm{~B})$					$2.93(2)$ $2.711(9)$		
Angles							
$\mathrm{C}(4)-\mathrm{S}(1)-$ $\mathrm{C}(11)$	$99.58(6)$	$97.5(2)$	$99.1(2)$				
$\mathrm{C}(5)-\mathrm{S}(2)-$ $\mathrm{C}(11)$	$99.08(6)$	$98.0(2)$	$99.2(2)$			$98.86(7)$	
$\mathrm{C}(3)-\mathrm{S}(1)-\mathrm{C}(8)$ $\{\mathbf{6 d}\}$				$97.98(9)$			
$\mathrm{C}(4)-\mathrm{S}(1)-$ $\mathrm{C}(11)\{\mathbf{7}\}$							

Table S2. Crystal data and structure refinement details for 6a-d and 7-9.

| | $\mathbf{6 a}$ | $\mathbf{6 b}$ | $\mathbf{6 c}$ | $\mathbf{6 d}$ | $\mathbf{7}$ | $\mathbf{8}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Formula | $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~S}_{3}$ | $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}$ | $\mathrm{C}_{29} \mathrm{H}_{38} \mathrm{O}_{3} \mathrm{~S}_{2}$ | $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{~S}_{2}$ | $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{~S}$ | $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{~F}_{12} \mathrm{Na}_{2}$ |
| O_{6} | $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{O}_{5} \mathrm{PS}_{3}$ | | | | | |
| M | | | | | | |

$(I>2 \sigma(I))$						
$R_{1} / w R_{2}$ (all data)	$0.0408 / 0.0884$	$0.0998 / 0.1664$	$0.0888 / 0.1556$	$0.0512 / 0.1259$	$0.1285 / 0.1563$	$0.1187 / 0.2606$
Largest diff. peak and hole, $\mathrm{e} / \mathrm{A}^{3}$	$0.63 /-0.42$	$0.51 /-0.32$	$0.31 /-0.19$	$0.50 /-0.20$	$0.34 /-0.28$	$0.56 /-0.38$

Table S3. Description of samples preparation for X-ray diffractometry study

Compound	Description
$\mathbf{6 a}$	By slow cooling of acetone-diethyl ether mixture (1:3 volume). Red-brown rectangular shaped crystals
$\mathbf{6 b}$	Dried mixture of products were dissolved in 20 ml of diethyl ether and then layered with 15 ml of hexane. Red-brown crystals.
$\mathbf{6 c}$	The product was dissolved in diethyl ether and then layered with a half-volume of hexane. Violet crystals.
$\mathbf{6 d}$	By slow evaporation of $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ heptane (1:1) mixture at rt. Red-brown crystals.
$\mathbf{7}$	By slow evaporation of $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ heptane (1:1) mixture at rt . Red crystals.
$\mathbf{8}$	By cooling of THF solution up to $-18^{\circ} \mathrm{C}$. Deep red crystals.
$\mathbf{9}$	By slow evaporation of methanol solution. Colorless semitransparent crystals.

EPR spectroscopy data and EPR spectra

Table S4 Parameters of the isotropic EPR spectra of metal complexes with o-quinones 6a-d and 7 at 293 K

quinone		Metallofragment (Mf), solvent					
		$\begin{gathered} { }^{7} \mathrm{Li} /{ }^{6} \mathrm{Li}, \\ \mathrm{THF} \end{gathered}$	TI, THF	K; THF	$\mathrm{Mn}(\mathrm{CO})_{4}$; toluene	H; toluene	$\mathrm{Mn}(\mathrm{CO})_{3} \mathrm{Ph}_{3} \mathrm{P}$; toluene
6a	g	2.0055	2.0007	2.0053	2.0052	-	2.0045
	$\mathrm{amf}_{\text {m }}(\mathrm{G})$	$\begin{gathered} 0.50 / \\ 0.19 \end{gathered}$	61.82	-	7.30	-	11.20
	$\mathrm{a}_{\mathrm{p},}(\mathrm{G})$	-	-	-	-	-	35.14
6b	g	2.0041	1.9996	2.0043	2.0052	-	-
	$\begin{aligned} & a_{N},(G) \\ & 2 x C N \end{aligned}$	0.17	-	0.18	0.22	-	-
	$\mathrm{amf}_{\text {, (G) }}$	$\begin{gathered} \hline 0.47 / \\ 0.18 \\ \hline \end{gathered}$	66.14	-	7.80	-	-
6c	g	2.0044	1.9996	2.0044	2.0036	2.0048	2.0024
	амт,(G)	$\begin{gathered} \hline 0.50 / \\ 0.19 \\ \hline \end{gathered}$	59.17	-	6.02	1.16	9.34
	$\begin{gathered} \text { ан,(G) } \\ 2 \times H \end{gathered}$	0.21	-	0.18	0.44	0.50	0.34
	ap, (G)	-	-	-	-	-	31.15
6d	g	2.0040	1.9990	2.0048	2.0030	2.0045	2.0024
	$\mathrm{amm}_{\text {m }}(\mathrm{G})$	$\begin{gathered} 0.52 / \\ 0.20 \\ \hline \end{gathered}$	60.00	-	7.10	1.18	11.10
	$\begin{aligned} & \text { ан,(G) } \\ & 2 \mathrm{xCH}_{3} \end{aligned}$	0.28	-	0.31	0.25	0.25	0.18
	$\mathrm{ap},(\mathrm{G})$	-	-	-	-	-	34.28
7	g	2.0045	1.9980	2.0046	2.0033	-	2.0029
	амm, (G)	$\begin{gathered} \hline 0.58 / \\ 0.23 \\ \hline \end{gathered}$	57.50	-	6.80	-	9.60
	$\begin{aligned} & \text { ан,(G) } \\ & 2 \mathrm{xCH}_{3} \end{aligned}$	0.15	-	0.16	-	-	-
	ap,(G)	-	-	-	-	-	34.30

Figure S8. EPR spectrum of potassium semiquinonate with 6a in THF solution, 293 K .

Figure S9. EPR spectrum of $\mathrm{Mn}(\mathrm{CO})_{4}$ semiquinonate with $\mathbf{6 a}$ in toluene solution, 293 K .

Figure S10. EPR spectrum of thallium semiquinonate with $\mathbf{6 a}$ in THF solution, 293 K .

Figure S11. EPR spectrum of lithium semiquinonate with $\mathbf{6 b}$ in THF solution, 293 K (left); simulated spectrum (right).

Figure S12. EPR spectrum of potassium semiquinonate with $\mathbf{6 b}$ in THF solution, 293 K (left); simulated spectrum (right).

Figure S13. EPR spectrum of $\mathrm{Mn}(\mathrm{CO})_{4}$ semiquinonate with $\mathbf{6 b}$ in toluene solution, 293 K (top); resolved signal for $5^{\text {th }}$ component of manganese sextet in diluted toluene solution (bottom)

Figure S14. EPR spectrum of thallium semiquinonate with $\mathbf{6 b}$ in THF solution, 293 K .

Figure S15. EPR spectrum of lithium semiquinonate with $\mathbf{6 c}$ in THF solution, 293 K (left); simulated spectrum (right).

Figure S16. EPR spectrum of $\mathrm{Mn}(\mathrm{CO})_{4}$ semiquinonate with 6 c in toluene solution, 293 K .

Figure S17. EPR spectrum of protonated semiquinone with $\mathbf{6 c}$ in toluene solution, 293 K .

Figure S18. EPR spectrum of potassium semiquinonate with $\mathbf{6 d}$ in THF solution, 293 K .

Figure S19. EPR spectrum of lithium semiquinonate with $\mathbf{6 d}$ in THF solution, 293 K (left); simulated spectrum (right).

Figure S20. EPR spectrum of thallium semiquinonate with $\mathbf{6 d}$ in THF solution, 293 K .

Figure S21. EPR spectrum of $\mathrm{Mn}(\mathrm{CO})_{4}$ semiquinonate with $\mathbf{6 d}$ in toluene solution, 293 K (left); resolved signal for low field component of manganese sextet in diluted toluene solution (right).

Figure S22. EPR spectrum of protonated semiquinone with $\mathbf{6 d}$ in toluene solution, 293 K .

Figure S23. EPR spectrum of $\mathrm{Mn}(\mathrm{CO})_{4}$ semiquinonate with $\mathbf{7}$ in toluene solution, 293 K .

Figure S 24 . EPR spectrum of $\mathrm{Mn}(\mathrm{CO})_{3}\left(\mathrm{PPh}_{3}\right)$ semiquinonate with $\mathbf{7}$ in toluene solution, 293 K .

Figure S25. EPR spectrum of lithium semiquinonate with 7 in THF solution, 293 K (left); simulated spectrum (right).

ELectrochemistry data

Figure S26. Cyclic voltammogram for compound $6 \mathrm{a}\left(2 \times 10^{-3} \mathrm{M}\right)$, measured in $\mathrm{CH}_{3} \mathrm{CN} B=0.1 \mathrm{~V} / \mathrm{s}, 0.1 \mathrm{M}$ $\mathrm{NBu}_{4} \mathrm{ClO}_{4}, \mathrm{Ag} / \mathrm{AgCl} / \mathrm{KCl}($ sat.)).

Figure S27. Cyclic voltammogram for compound $\mathbf{6 b}\left(2 \times 10^{-3} \mathrm{M}\right)$, measured in $\mathrm{CH}_{3} \mathrm{CN} \mathrm{B}=0.1 \mathrm{~V} / \mathrm{s}, 0.1 \mathrm{M}$ $\mathrm{NBu}_{4} \mathrm{ClO}_{4}, . \mathrm{Ag} / \mathrm{AgCl} / \mathrm{KCl}$ (sat.)).

Figure S28. Cyclic voltammogram for compound $6 \mathbf{c}\left(2 \times 10^{-3} \mathrm{M}\right)$, measured in $\mathrm{CH}_{3} \mathrm{CN} B=0.1 \mathrm{~V} / \mathrm{s}, 0.1 \mathrm{M}$ $\mathrm{NBu}_{4} \mathrm{ClO}_{4}, \mathrm{Ag} / \mathrm{AgCl} / \mathrm{KCl}($ sat.)).

Figure S29. Cyclic voltammogram for compound $6 \mathbf{d}\left(2 \times 10^{-3} \mathrm{M}\right)$, measured in $\mathrm{CH}_{3} \mathrm{CN} \mathrm{B}=0.1 \mathrm{~V} / \mathrm{s}, 0.1 \mathrm{M}$ $\mathrm{NBu}_{4} \mathrm{ClO}_{4}, \mathrm{Ag} / \mathrm{AgCl} / \mathrm{KCl}($ sat.)).

Figure S30. Cyclic voltammogram for compound $\mathbf{7}\left(2 \times 10^{-3} \mathrm{M}\right)$, measured in $\mathrm{CH}_{3} \mathrm{CN} \mathrm{B}=0.1 \mathrm{~V} / \mathrm{s}, 0.1 \mathrm{M}$ $\mathrm{NBu}_{4} \mathrm{ClO}_{4}, . \mathrm{Ag} / \mathrm{AgCl} / \mathrm{KCl}$ (sat.)).

UV-vis spectra

Figure S31. UV-vis spectrum of o-quinone 6a in THF.

Figure S32. UV-vis spectrum of o-quinone 3a in THF.

Figure S33. UV-vis spectrum of o-quinone $\mathbf{6} \mathbf{b}$ in THF.

Figure S34. UV-vis spectrum of o-quinone $\mathbf{6 c}$ in THF.

Figure S35. UV-vis spectrum of o-quinone $\mathbf{6 d}$ in THF.

Figure S36. UV-vis spectrum of o-quinone $\mathbf{7}$ in THF.

NMR spectra

\qquad
$\begin{array}{lll}4 & 7.2 & 7.0 & 6.8 & 6.6 & 6.4 & 6.2 & 6.0 & 5.8 & 5.6 & 5.4 & 5.2 & 5.0 & 4.8 & 4.6 & 4.4 & 4.2 & 4.0 & 3.8 & 3.6 & 3.4 & 3.2 & 3.0 & 2.8 & 2.6 & 2.4 & 2.2 & 2.0 & 1.8 & 1.6 & 1.4 & 1.2 & 1.0 & 0.8 & 0 .\end{array}$

Figure $\mathrm{S} 37 .{ }^{1} \mathrm{H}$ NMR spectrum of quinone 6 a in CDCl_{3}

Figure $\mathrm{S} 38 .{ }^{13} \mathrm{C}$ NMR spectrum of quinone $\mathbf{6 a}$ in CDCl_{3}

Figure S39. ${ }^{1} \mathrm{H}$ NMR spectrum of catechol 10 in DMSO- d_{6}

Figure S40. ${ }^{13} \mathrm{C}$ NMR spectrum of catechol 10 in DMSO- d_{6}

Figure S41. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{9}$ in CDCl_{3}

Figure $\mathrm{S} 42 .{ }^{31} \mathrm{P}$ NMR spectrum of compound $\mathbf{9}$ in CDCl_{3}

Figure $\mathrm{S} 43 .{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{9}$ in CDCl_{3}

Figure $\mathrm{S} 44 .{ }^{1} \mathrm{H}$ NMR spectrum of quinone $\mathbf{6 b}$ in CDCl_{3}

Figure $\mathrm{S} 45 .{ }^{13} \mathrm{C}$ NMR spectrum of quinone $\mathbf{6 b}$ in CDCl_{3}

Figure $\mathrm{S} 46 .{ }^{1} \mathrm{H}$ NMR spectrum of quinone $\mathbf{6 c}$ in CDCl_{3}

Figure $\mathrm{S} 47 .{ }^{13} \mathrm{C}$ NMR spectrum of quinone $\mathbf{6 c}$ in CDCl_{3}

tBu

Figure $\mathrm{S} 48 .{ }^{1} \mathrm{H}$ NMR spectrum of quinone $\mathbf{6 d} \mathbf{~ i n ~} \mathrm{CDCl}_{3}$

Figure $\mathrm{S} 49 .{ }^{13} \mathrm{C}$ NMR spectrum of quinone $\mathbf{6 d}$ in CDCl_{3}

Figure $\mathrm{S} 50 .{ }^{1} \mathrm{H}$ NMR spectrum of quinone $\mathbf{7}$ in CDCl_{3}

Figure $\mathrm{S} 51 .{ }^{13} \mathrm{C}$ NMR spectrum of quinone $\mathbf{7}$ in CDCl_{3}

Figure $\mathrm{S} 52 .{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8}$ in $\mathrm{CD}_{3} \mathrm{OD}$

Figure $\mathrm{S} 53 .{ }^{13} \mathrm{C}$ NMR spectrum of 8 in $\mathrm{CD}_{3} \mathrm{OD}$

Figure $\mathrm{S} 54 .{ }^{19} \mathrm{~F}$ NMR spectrum of $\mathbf{8}$ in $\mathrm{CD}_{3} \mathrm{OD}$

