

Supporting Information

for

Benzothiazolium salts as reagents for the deoxygenative perfluoroalkylthiolation of alcohols

Armin Ariamajd, Nils J. Gerwien, Benjamin Schwabe, Stefan Dix and Matthew N. Hopkinson

Beilstein J. Org. Chem. 2021, 17, 83-88. doi:10.3762/bjoc.17.8

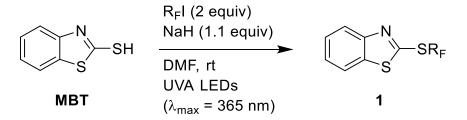
Experimental section

License and Terms: This is a supporting information file under the terms of the Creative Commons Attribution License (https://creativecommons.org/ <u>licenses/by/4.0</u>). Please note that the reuse, redistribution and reproduction in particular requires that the author(s) and source are credited and that individual graphics may be subject to special legal provisions.

Contents

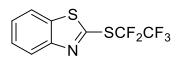
1	General Information		S2
2	Synthesis of BT-SR _F Reagents		S3
	2.1	Perfluoroalkylation of MBT with Perfluoroalkyl lodides	S3
	2.2	N-Methylation of 2-((Perfluoroalkyl)thio)benzo[d]thiazoles 1	S6
3	Sco	pe and Limitations of the Deoxyperfluoroalkylthiolation of Alcohols	S9
	3.1	Deoxyperfluoroalkylation of 4-Nitrobenzyl alcohol (2a) with Different BT -SR _F Reagents	S9
	3.2	Deoxypentafluoroethylation of Alcohols 2 with $BT-SC_2F_5$	S16
	3.3	Deoxyheptafluoropropylation of Alcohols 2 with $BT-SC_3F_7$	S21
4 NMR Spectra of Novel Compounds		S22	

1 General Information


Solvents were purified either with the solvent purification system MB-SPS-800 (Braun) or by manual distillation over standard drying agents. The dried solvents were then stored over molecular sieves or transferred under argon. UVA light irradiation for the synthesis of the reagents was provided by a LED lamp (λ_{max} = 365 nm, IP65). All compounds employed were purchased from commercial suppliers and used as received. The deoxygenative perfluoroalkylthiolation reactions were performed in round-bottom flasks under an atmosphere of air. Flash chromatography was performed using silica gel.

NMR spectra were acquired on a JEOL ECX 400 (400 MHz), JEOL ECP 500/ Bruker Avance 500 (500 MHz), Varian INOVA 600 (600 MHz) or a Bruker Avance 700 (700 MHZ) in CDCl₃ or CD₃CN as a solvent. Chemical shifts (δ) are quoted in ppm downfield of tetramethylsilane. The residual solvent signals were used as references for ¹H and ¹³C NMR spectra. ¹⁹F NMR spectra are not calibrated by an internal reference and coupling constants (J_{F-H}) where reported were determined from proton coupled ¹⁹F NMR studies. Coupling constants (J) are quoted in Hz. ¹H NMR yields where reported were measured using CH₂Br₂ as an internal standard.

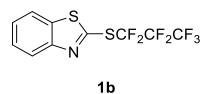
Mass spectra were obtained on a ESI-FTICR-MS: Ionspec QFT-7 (Agilent/Varian) or on a HR-EI-MS: Waters Autospec Premier with Agilent 7890B GC. Infrared spectra were measured on a Thermo Scientific Nicolet iS10 FT-IR Spectrometer. Characteristic absorption bands are displayed in wavelengths \tilde{v} in cm⁻¹ and were analyzed with the software Spectral Manager from JASCO.


2 Synthesis of BT-SR_F Reagents

2.1 Perfluoroalkylation of MBT with Perfluoroalkyl lodides

General Procedure A:¹ Mercaptobenzothiazole (1.0 equiv) was dissolved in DMF (0.16-0.25 M) under argon. Sodium hydride (60 wt % in mineral oil, 1.1 equiv) was added and the mixture was stirred at rt for 30 min. The perfluoroalkyl iodide (1.2 or 2 equiv) was then added (condensed in for I-C₂F₅) and the mixture was stirred under irradiation from UVA LEDS (λ_{max} = 365 nm) overnight. Water was added and the crude product was extracted with EtOAc (3×). The combined organic fractions were washed with water (3×), dried over anhydrous Na₂SO₄ and concentrated in vacuo. Purification by column chromatography over silica gel afforded the 2-((perfluoroalkyl)thio)benzo[*d*]thiazole intermediate **1**.

2-((Perfluoroethyl)thio)benzo[d]thiazole (1a)


1a

Prepared using General Procedure A with 2 equiv of $I-C_2F_5$ on a 29.9 mmol scale. Pale yellow oil (5.21 g, 18.2 mmol, 61%).

¹H NMR (400 MHz, Chloroform-*d*) δ = 8.16 (dm, *J* = 8.1 Hz, 1H), 7.90 (dm, *J* = 8.1 Hz, 1H), 7.56 (ddd, *J* = 8.3, 7.2, 1.4 Hz, 1H), 7.50 (t, *J* = 8.5, 7.2, 1.3 Hz, 1H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ = -82.5 (t, *J* = 3 Hz, 3F), -90.1 (q, *J* = 3 Hz, 2F). ¹³C NMR (151 MHz, Chloroform-*d*) δ = 153.3 (C_q), 150.0 (C_q), 138.6 (C_q), 127.2 (CH), 127.0 (CH), 124.5 (CH), 121.4 (CH), 119.7 (tq, *J* = 294, 42 Hz, CF₃), 118.4 (qt, *J* = 287, 36 Hz, SCF₂). HRMS (ESI): m/z calculated for [C₉H₅F₅NS₂]⁺ ([M+H]⁺): 285.9778, measured: 285.9793. IR (ATR): v (cm⁻¹): 3071, 2927, 1592, 1556, 1456, 1410, 1329, 1312, 1206, 1103, 1016, 994, 949, 853, 757, 751, 727, 708, 676, 651, 629, 608, 597, 550.

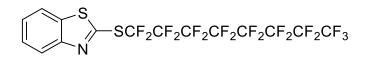
¹ Procedure adapted from: A. Harsányi, É. Dorkó, Á. Csapó, T. Bakó, C. Peltz, J. Rábai, *J. Fluorine Chem.* **2011**, *132*, 1241-1246.

2-((Perfluoropropyl)thio)benzo[d]thiazole (1b)

Prepared using General Procedure A with 2 equiv of I-C₃F₇ on a 10.0 mmol scale. Pale yellow oil (2.64 g, 7.87 mmol, 79%).

¹H NMR (600 MHz, Chloroform-*d*) δ = 8.16 (dd, *J* = 8.2, 0.8 Hz, 1H), 7.90 (d, *J* = 8.2, 0.9 Hz, 1H), 7.55 (ddd, *J* = 8.3, 7.2, 1.3 Hz, 1H), 7.50 (ddd, *J* = 8.3, 7.2, 1.3 Hz, 1H). ¹⁹F NMR (565 MHz, Chloroform-*d*) δ = -79.9 (t, *J* = 9 Hz, 3F), -85.8 (q, *J* = 9 Hz, 2F), -123.3 (m, 2F). ¹³C NMR (151 MHz, Chloroform-*d*) δ = 153.3 (C_q), 149.9 (C_q), 138.6 (C_q), 127.2 (CH), 127.0 (CH), 124.5 (CH), 121.4 (CH), 122.1 (tt, *J* = 295, 34 Hz, SCF₂), 117.6 (qt, *J* = 288, 34 Hz, CF₃), 108.7 (tm, *J* = 266 Hz, CF₂). HRMS (EI): m/z calculated for [C₁₀H₄F₇NS₂]⁺ ([M]⁺): 334.9668, measured: 334.9644. IR (ATR): v (cm⁻¹): 3068, 2927, 2854, 1556, 1456, 1410, 1335, 1313, 1208, 1185, 1115, 1091, 1040, 1016, 916, 846, 757, 741, 727, 708, 687, 674, 598.

2-((Perfluoropentyl)thio)benzo[d]thiazole (1c)

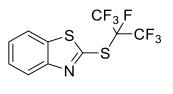


1c

Prepared using General Procedure A with 2 equiv of $I-C_5F_{11}$ on a 6.0 mmol scale. Pale yellow oil (1.79 g, 4.11 mmol, 69%).

¹H NMR (600 MHz, Chloroform-*d*) δ = 8.16 (dm, *J* = 8.3 Hz, 1H), 7.90 (dm, *J* = 8.0 Hz, 1H), 7.56 (ddm, *J* = 8.3, 7.1 Hz, 1H), 7.50 (ddm, *J* = 8.1, 7.1 Hz, 1H). ¹⁹F NMR (565 MHz, Chloroform-*d*) δ = -80.8 (m, 3F), -84.9 (m, 2F), -119.0 (m, 2F), -122.2 (m, 2F), -126.1 (m, 2F). ¹³C NMR (151 MHz, Chloroform-*d*) δ = 153.3 (C_q), 150.0 (C_q), 138.7 (C_q), 127.2 (CH), 127.1 (CH), 124.5 (CH), 121.4 (CH), 122.8 (tt, *J* = 297, 35 Hz, SCF₂), 117.3 (qt, *J* = 286, 33 Hz, CF₃), 110.7 (tm, *J* = 270 Hz, CF₂) *Note: Two perfluoroalkyl* ¹³C *peaks could not be observed.* HRMS (EI): m/z calculated for [C₁₂H₄F₁₁NS₂]⁺ ([M]⁺): 434.9604, measured: 434.9620. IR (ATR): v (cm⁻¹): 3065, 3046, 1552, 1456, 1410, 1357, 1314, 1271, 1232, 1199, 1136, 1111, 1086, 1075, 1017, 999, 941, 854, 813, 767, 761, 745, 722, 696, 682, 659, 619, 594, 570.

2-((Perfluorooctyl)thio)benzo[d]thiazole (1d)²

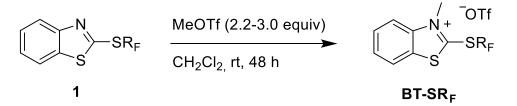

Prepared using General Procedure A with 1.2 equiv of $I-C_8F_{17}$ on a 3.0 mmol scale. White solid (1.67 g, 2,85 mmol, 95%).

1d

¹**H NMR (400 MHz, Chloroform-d)** δ = 8.17 (dm, *J* = 8.3 Hz, 1H), 7.92 (dm, *J* = 8.1 Hz, 1H), 7.57 (m, 1H), 7.52 (m, 1H). ¹⁹**F NMR (376 MHz, Chloroform-d)** δ = -80.6 (t, *J* = 11 Hz, 3F), -84.8 (t, *J* = 15 Hz, 2F), -118.7 (m, 2F), -121.0 (m, 2F), -121.6 (m, 2F), -121.8 (m, 2F), -122.6 (m, 2F), -126.0 (m, 2F).

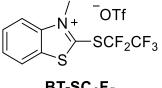
The data agree with literature precedents.²

2-((Perfluoropropan-2-yl)thio)benzo[d]thiazole (1e)


1e

Prepared using General Procedure A with 1.2 equiv of $I-CF(CF_3)_2$ on a 14.1 mmol scale. Pale yellow oil (4.30 g, 12.8 mmol, 91%).

¹H NMR (400 MHz, Chloroform-*d*) δ = 8.16 (dm, *J* = 8.2 Hz, 1H), 7.88 (dm, *J* = 7.9 Hz, 1H), 7.54 (ddd, *J* = 8.2, 7.3, 1.4 Hz, 1H), 7.48 (ddd, *J* = 8.0, 7.2, 1.3 Hz, 1H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ = -73.9 (d, *J* = 10 Hz, 6F), -155.6 (sept, *J* = 11 Hz, 1F). ¹³C NMR (101 MHz, Chloroform-*d*) δ = 153.2 (C_q), 149.9 (C_q), 138.8 (C_q), 127.1 (CH), 127.1 (CH, two overlapping peaks), 124.6 (CH), 121.4 (CH), 120.1 (qd, *J* = 288, 29 Hz, CF₃), 98.1 (d(sept), *J* = 255, 35 Hz, CF). HRMS (EI): m/z calculated for [C₁₀H₄F₇NS₂]⁺ ([M]⁺): 334.9668, measured: 334.9688. IR (ATR): v (cm⁻¹): 3068, 2927, 2854, 1555, 1456, 1409, 1281, 1263, 1219, 1170, 1134, 1092, 992, 959, 934, 853, 755, 728, 717, 676, 619, 589, 602, 551.


² D. E. Yerien, S. Barata-Vallejo, B. Camps, A. E. Cristófalo, M. E. Cano, M. L. Uhrig, A. Postigo, *Catal. Sci. Technol.* **2017**, *7*, 2274-2282.

2.2 N-Methylation of 2-((Perfluoroalkyl)thio)benzo[d]thiazoles 1

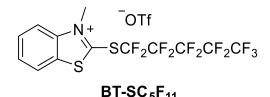
General Procedure B: 2-Substituted benzothiazoles (1.0 equiv) were dissolved in dry CH₂Cl₂ (0.10 M) and methyl trifluoromethanesulfonate (2.2-3.0 equiv) was added. The reaction mixture was stirred at rt for 48 h and the product was precipitated with diethyl ether. The suspension was then filtered, and the residue washed with diethyl ether (3×). After drying in vacuo, **BT-SR**_F salts were obtained as off-white solids.

3-Methyl-2-((perfluoroethyl)thio)benzo[d]thiazol-3-ium trifluoromethanesulfonate (BT-SC₂F₅)

BT-SC₂F₅

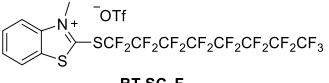
Prepared from 1a using General Procedure B with 2.2 equiv of MeOTf on a 16.3 mmol scale. Off-white solid (6.70 g, 14,9 mmol, 91%).

¹**H NMR (400 MHz, Acetonitrile-** d_3) δ = 8.40 (dm, J = 8.3 Hz, 1H), 8.29 (dm, J = 8.8 Hz, 1H), 8.07 (ddm, J = 8.6, 7.2 Hz, 1H), 7.99 (ddm, J = 8.4, 7.2 Hz, 1H), 4.47 (s, 3H). ¹⁹F NMR (565 MHz, Acetonitrile-d₃) δ = -78.5 (3F), -82.0 (t, J = 3 Hz, 3F), -87.8 (q, J = 3 Hz, 2F). ¹³C NMR (151 MHz, Acetonitrile-d₃) δ = 158.6 (C_{a}), 143.9 (C_{a}), 134.6 (C_{a}), 132.5 (CH), 131.7 (CH), 125.3 (CH), 122.0 (g, J = 322 Hz, SO₂CF₃), 119.9 (tq, J = 299 Hz, 42, CF₃), 119.6 (CH), 118.7 (qt, J = 286 Hz, 35, SCF₂), 40.2 (CH₃). HRMS (ESI): m/z calculated for [C₁₀H₇F₅NS₂]⁺ ([M-OTf]⁺): 299.9935, measured: 299.9948. **IR (ATR):** v (cm⁻¹): 3092, 3028, 1578, 1491, 1463, 1433, 1383, 1330, 1278, 1267, 1241, 1211, 1160, 1337, 1111, 1207, 955, 815, 160, 150, 722, 714, 658, 638, 602, 573.


3-Methyl-2-((perfluoropropyl)thio)benzo[d]thiazol-3-ium trifluoromethanesulfonate (BT-SC₃F₇)

Prepared from 1b using General Procedure B with 3.0 equiv of MeOTf on a 5.25 mmol scale. Off-white solid (2.46 g, 4.92 mmol, 94%).

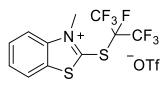
¹H NMR (400 MHz, Acetonitrile-*d*₃) δ = 8.39 (d, *J* = 8.5 Hz, 1H), 8.27 (d, *J* = 8.8 Hz, 1H), 8.04 (t, *J* = 8.0 Hz, 1H), 7.96 (t, *J* = 7.8 Hz, 1H), 4.45 (s, 3H). ¹⁹F NMR (376 MHz, Acetonitrile-*d*₃) δ = -79.2 (3F), -80.5 (t, *J* = 9 Hz, 3F), -83.8 (q, *J* = 9 Hz, 2F), -123.2 (m, 2F). ¹³C NMR (176 MHz, Acetonitrile-*d*₃) δ = 158.7 (C_q), 144.1 (C_q), 134.7 (C_q), 132.6 (CH), 131.8 (CH), 125.3 (CH), 122.5 (tt, *J* = 299, 35 Hz, SCF₂), 122.0 (q, *J* = 320 Hz, SO₂CF₃), 118.3 (qt, *J* = 288, 34 Hz, CF₃), 119.7 (CH), 109.4 (tm, *J* = 267 Hz, CF₂), 40.3 (CH₃). HRMS (ESI): m/z calculated for $[C_{11}H_7F_7NS_2]^+$ ([M-OTf]⁺): 349.9903, measured: 349.9922. IR (ATR): v (cm⁻¹): 3089, 3031, 1578, 1490, 1463, 1433, 1382, 1340, 1277, 1239, 1266, 1218, 1189, 1163, 1163, 1121, 1054, 1027, 914, 848, 815, 761, 751, 743, 723, 714, 687, 639, 574.


3-Methyl-2-((perfluoropentyl)thio)benzo[d]thiazol-3-ium trifluoromethanesulfonate (BT-SC5F11)

Prepared from **1c** using General Procedure B with 2.5 equiv of MeOTf on a 3.68 mmol scale. Off-white solid (2.07 g, 3.45 mmol, 94%).

¹H NMR (400 MHz, Acetonitrile-*d*₃) δ = 8.42 (d, *J* = 8.3 Hz, 1H), 8.31 (d, *J* = 8.6 Hz, 1H), 8.07 (t, *J* = 8.0 Hz, 1H), 8.00 (t, *J* = 7.8 Hz, 1H), 4.48 (s, 3H). ¹⁹F NMR (376 MHz, Acetonitrile-*d*₃) δ = -79.2 (3F), -81.4 (t, *J* = 10 Hz, 3F), -82.7 (t, *J* = 14 Hz, 2F), -118.8 (m, 2F), -122.5 (m, 2F), -126.5 (m, 2F). ¹³C NMR (151 MHz, Acetonitrile-*d*₃) δ = 159.6 (C_q), 144.0 (C_q), 134.7 (C_q), 132.6 (CH), 131.8 (CH), 125.3 (CH), 123.1 (tt, *J* = 300, 35 Hz, SCF₂), 122.0 (q, *J* = 320 Hz, SO₂CF₃), 119.6 (CH), 118.0 (qt, *J* = 289, 33 Hz, CF₃), 111.3 (tm, *J* = 267 Hz, CF₂), 40.2 (CH₃) *Note: Two perfluoroalkyl* ¹³C *peaks could not be observed.* HRMS (ESI): m/z calculated for [C₁₃H₇F₁₁NS₂]⁺ ([M–OTf]⁺): 449.9839, measured: 449.9843. IR (ATR): v (cm⁻¹): 3101, 3031, 1577, 1490, 1462, 1433, 1357, 1277, 1266, 1241, 1224, 1201, 1163, 1142, 1081, 1028, 941, 863, 847, 815, 762, 737, 722, 697, 664, 639, 597, 572.

3-Methyl-2-((perfluorooctyl)thio)benzo[d]thiazol-3-ium trifluoromethanesulfonate (BT-SC₈F₁₇)

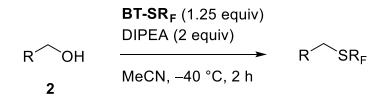

BT-SC₈F₁₇

Prepared from **1d** using General Procedure B with 3.0 equiv of MeOTf on a 1.57 mmol scale. Off-white solid (1.08 g, 1.44 mmol, 92%).

¹H NMR (400 MHz, Acetonitrile- d_3) δ = 8.40 (d, J = 8.4 Hz, 1H), 8.29 (d, J = 8.7 Hz, 1H), 8.07 (t, J = 7.6 Hz, 1H), 7.99 (t, J = 7.8 Hz, 1H), 4.47 (s, 3H). ¹⁹F NMR (376 MHz, Acetonitrile- d_3) δ = -79.3 (3F), -81.4 (t, J = 10 Hz, 3F), -82.5 (t, J = 14 Hz, 2F), -118.5 (m, 2F), -121.4 (m, 2F), -121.5 (m, 2F), -122.2 (m, 2F), -123.0 (m, 2F), -126.5 (m, 2F). ¹³C NMR (176 MHz, Acetonitrile- d_3) δ = 158.5 (C_q), 143.9 (C_q), 134.7

(C_q), 132.6 (CH), 131.8 (CH), 125.3 (CH), 123.1 (tt, J = 300, 35 Hz, SCF₂), 122.0 (q, J = 318 Hz, SO₂CF₃), 119.6 (CH), 118.0 (qt, J = 288, 32 Hz, CF₃), 111.6 (m, several overlapping peaks, CF₂), 40.2 (CH₃) *Note: Several perfluoroalkyl* ¹³C *peaks could not be assigned.* **HRMS (ESI):** m/z calculated for [C₁₆H₇F₁₇NS₂]⁺ ([M-OTf]⁺): 599.9743, measured: 599.9730. **IR (ATR):** v (cm⁻¹): 3101, 2361, 1576, 1490, 1461, 1435, 1370, 1328, 1281, 1251, 1200, 1149, 1134, 1097, 1054, 1031, 958, 930, 849, 816, 798, 768, 756, 741, 723, 714, 707, 655.

3-Methyl-2-((perfluoroisopropyl)thio)benzo[*d*]thiazol-3-ium trifluoromethanesulfonate (BT-SCF(CF₃)₂)

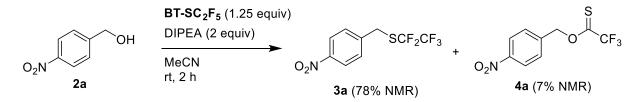


 $BT-SCF(CF_3)_2$

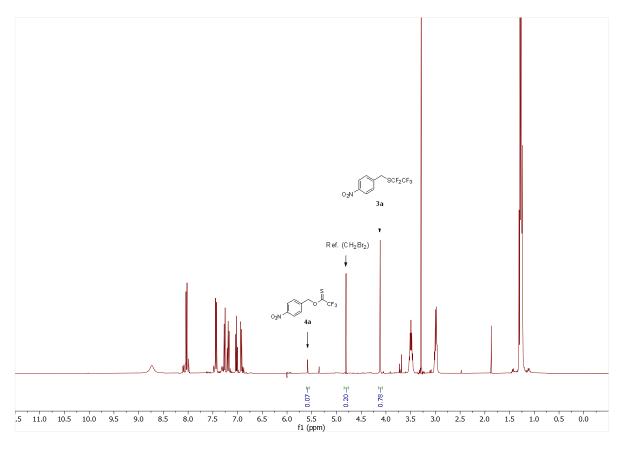
Prepared from **1e** using General Procedure B with 3.0 equiv of MeOTf on a 12.8 mmol scale. Off-white solid (3.73 g, 10.7 mmol, 83%).

¹H NMR (700 MHz, Acetonitrile-*d*₃) δ = 8.43 (ddd, *J* = 8.4, 1.2, 0.7 Hz, 1H), 8.33 (dt, *J* = 8.7, 0.9 Hz, 1H), 8.07 (ddd, *J* = 8.6, 7.2, 1.2 Hz, 1H), 7.99 (ddd, *J* = 8.3, 7.2, 1.0 Hz, 1H), 4.51 (s, 3H). ¹⁹F NMR (376 MHz, Acetone-*d*₆) δ = -74.7 (d, *J* = 11 Hz, 6F), -78.9 (3F), -154.7 (sept, *J* = 11 Hz, 1F). ¹³C NMR (177 MHz, Acetonitrile-*d*₃) δ = 158.3 (C_q), 143.8 (C_q), 134.8 (C_q), 132.7 (CH), 132.0 (CH), 125.4 (CH), 122.0 (q, *J* = 321 Hz, SO₂CF₃), 120.4 (qd, *J* = 289, 28 Hz, CF₃), 119.7 (CH), 98.4 (d(sept), *J* = 260, 36 Hz, CF), 40.4 (CH₃). HRMS (ESI): m/z calculated for [C₁₁H₇F₇NS₂]⁺ ([M-OTf]⁺): 349.9903, measured: 349.9923. IR (ATR): v (cm⁻¹): 3086, 3031, 1579, 1491, 1463, 1432, 1382, 1276, 1240, 1221, 1178, 1159, 1139, 1099, 1027, 965, 937, 814, 755, 720, 638, 572, 540.

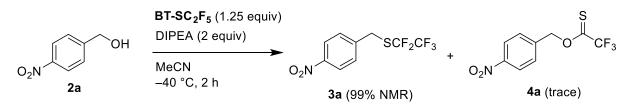
3 Scope and Limitations of the Deoxyperfluoroalkylthiolation of Alcohols

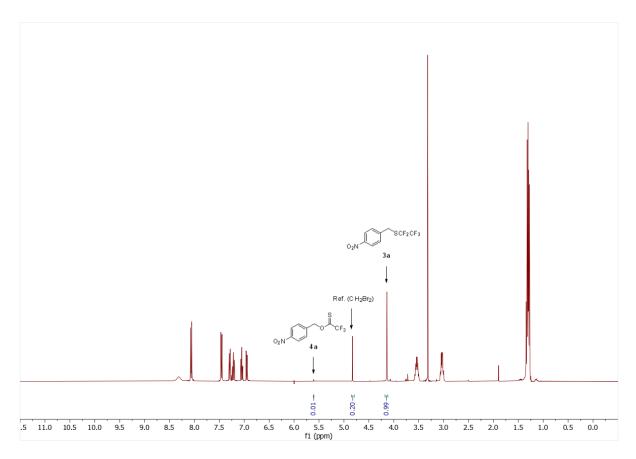


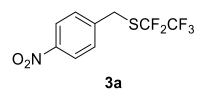
General Procedure C: The alcohol (0.50 mmol, 1.0 equiv) was dissolved in MeCN (0.17 M), BT-SR_F (0.625 mmol, 1.25 equiv) was added and the reaction mixture was cooled to -40 °C. NEt(iPr)₂ (174 µL,1.0 mmol, 2.0 equiv) was then added dropwise and the reaction mixture was stirred for 1-2 h at -40 °C. The reaction mixture was concentrated in vacuo and purified by column chromatography over silica gel.


3.1 Deoxyperfluoroalkylation of 4-Nitrobenzyl alcohol (2a) with Different BT-SR_F Reagents

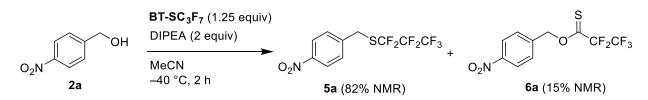
3.1.1 With $BT-SC_2F_5$


a) At rt (DIPEA added at 0 °C then reaction warmed to rt over 2 h)

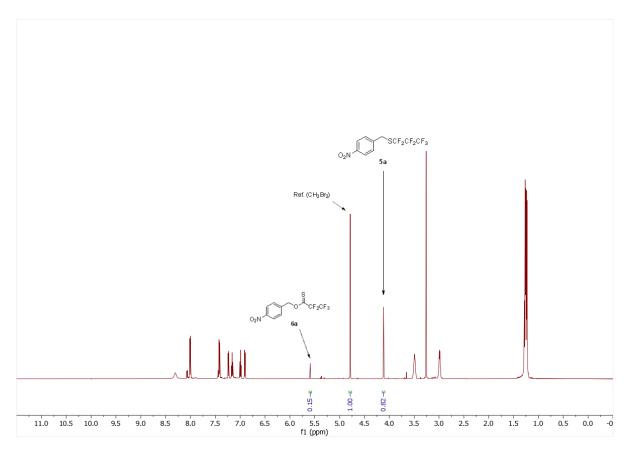

Crude ¹H NMR Spectrum: 0.5 mmol scale, CH₂Br₂ (0.1 mmol) as internal reference


b) At -40 °C (General Procedure C)

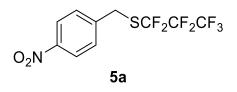
Crude ¹H NMR Spectrum: 0.5 mmol scale, CH₂Br₂ (0.1 mmol) as internal reference



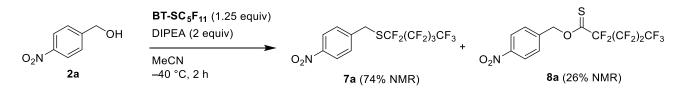
(4-Nitrobenzyl)(perfluoroethyl)sulfane (3a)

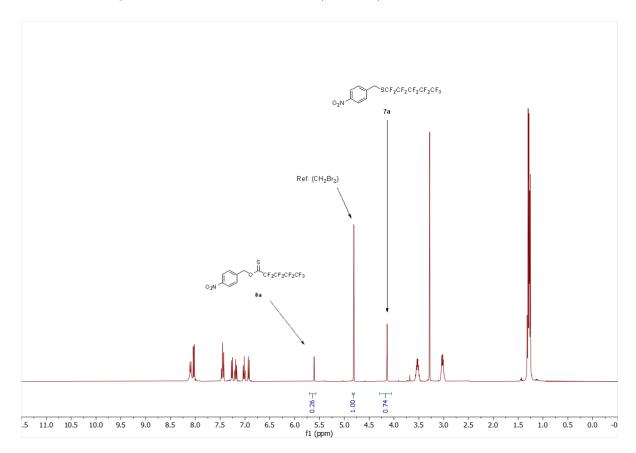


Prepared from 4-nitrobenzyl alcohol (**2a**) and BT-SC₂F₅ using General Procedure C. Yellow liquid (131 mg, 0.46 mmol, 91%).

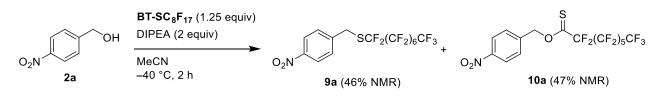

¹H NMR (600 MHz, Chloroform-*d*) δ = 8.20 (d, *J* = 8.6 Hz, 2H), 7.53 (d, *J* = 8.6 Hz, 2H), 4.21 (s, 2H). ¹⁹F NMR (565 MHz, Chloroform-*d*) δ = -83.3 (m, 3F), -92.0 (m, 2F). ¹³C NMR (151 MHz, Chloroform-*d*) δ = 147.8 (C_q), 142.7 (C_q), 130.0 (CH), 124.2 (CH), 121.3 (tq, *J* = 289, 41 Hz, CF₂), 118.5 (qt, *J* = 286, 36 Hz, CF₃), 32.2 (t, *J* = 4 Hz, CH₂). HRMS (ESI): m/z calculated for [C₉H₅F₅NO₂S]⁻ ([M-H]⁻): 285.9967, measured: 285.9967. IR (ATR): v (cm⁻¹): 3117, 3093, 2952, 2860, 1602, 1521, 1346, 1323, 1254, 1205, 1095, 1016, 966, 889, 858, 819, 802, 750, 706, 642, 624, 590, 551.

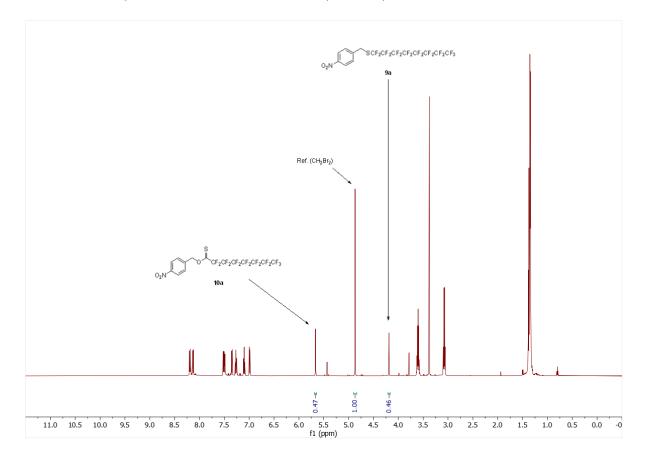
Crude ¹H NMR Spectrum: 0.5 mmol scale, CH₂Br₂ (0.5 mmol) as internal reference

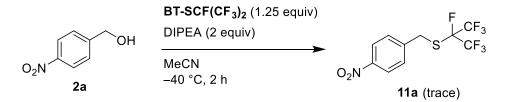

(4-Nitrobenzyl)(perfluoropropyl)sulfane (5a)

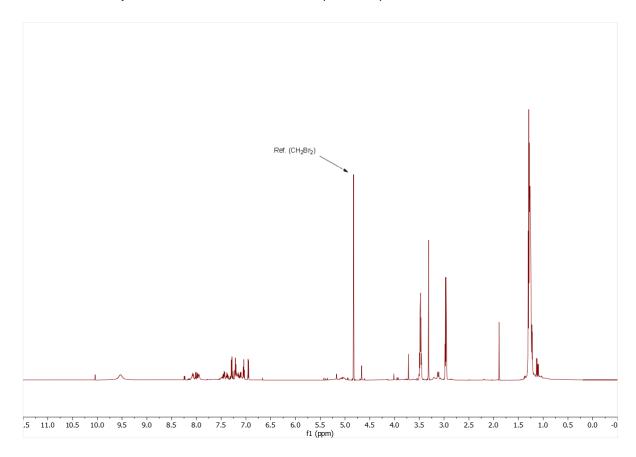

Prepared from 4-nitrobenzyl alcohol (**2a**) and BT-SC₃F₇ using General Procedure C. Yellow solid (139 mg, 0.412 mmol, 82%).

¹H NMR (400 MHz, Chloroform-*d*) δ = 8.21 (dm, *J* = 8.7 Hz, 2H), 7.55 (dm, *J* = 8.7 Hz, 2H), 4.24 (s, 2H). ¹⁹F NMR (377 MHz, Chloroform-*d*) δ = -80.0 (t, *J* = 10 Hz, 3F), -88.0 (qt, *J* = 9, 4 Hz, 2F), -124.0 (t, *J* = 4 Hz, 2F). ¹³C NMR (177 MHz, Chloroform-*d*) δ = 147.8 (C_q), 142.8 (C_q), 130.1 (CH), 124.3 (CH), 123.8 (tt, *J* = 290, 34 Hz, SCF₂), 117.7 (qt, *J* = 288, 34 Hz, CF₃), 108.6 (tm, *J* = 265 Hz, CF₂), 32.3 (t, *J* = 4 Hz, CH₂). HRMS (EI): m/z calculated for [C₁₀H₆F₇NO₂S]⁺ ([M]⁺): 337.0002, measured: 337.0004. IR (ATR): v (cm⁻¹): 3083, 2929, 2857, 1931, 1726, 1602, 1522, 1494, 1424, 1346, 1208, 1182, 1109, 1087, 1038, 1017, 926, 890, 855, 801, 751, 742, 717, 706, 678, 653, 631, 622, 606.

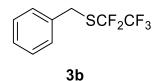

3.1.3 With BT-SC₅F₁₁


Crude ¹H NMR Spectrum: 0.5 mmol scale, CH₂Br₂ (0.5 mmol) as internal reference


3.1.4 With BT-SC₈F₁₇


 $\label{eq:crude 1} \textbf{H} \ \textbf{NMR} \ \textbf{Spectrum}: \ 0.5 \ \textbf{mmol} \ \textbf{scale}, \ \textbf{CH}_2 \textbf{Br}_2 \ (0.5 \ \textbf{mmol}) \ \textbf{as internal reference}$

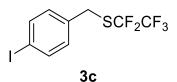
3.1.5 With BT-SCF(CF₃)₂



Crude ¹H NMR Spectrum: 0.5 mmol scale, CH₂Br₂ (0.5 mmol) as internal reference

3.2 Deoxypentafluoroethylation of Alcohols 2 with BT-SC₂F₅

(Benzyl)(perfluoroethyl)sulfane (3b)³

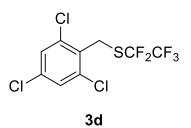


Prepared from benzyl alcohol (**2b**) and $BT-SC_2F_5$ using General Procedure C. Pale yellow liquid (88 mg, 0.36 mmol, 73%).

¹H NMR (400 MHz, Chloroform-*d*) δ = 7.29 – 7.38 (m, 5H), 4.17 (s, 2H). ¹⁹F NMR (377 MHz, Chloroform-*d*) δ = -83.3 (t, *J* = 4 Hz, 3F), -92.3 (t, *J* = 4 Hz, 2F).

The data agree with literature precedents.³

(4-lodobenzyl)(perfluoroethyl)sulfane (3c)



Prepared from 4-iodobenzyl alcohol (2c) and BT-SC₂F₅ using General Procedure C. Yellow liquid (140 mg, 0.38 mmol, 76%).

¹H NMR (400 MHz, Chloroform-*d*) δ = 7.69 (dm, *J* = 8.5 Hz, 2H), 7.10 (dm, *J* = 8.5 Hz, 2H), 7.30 (m, 1H), 4.09 (s, 2H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ = -83.2 (t, *J* = 4 Hz, 3F), -92.2 (q, *J* = 4 Hz, 2F). ¹³C NMR (101 MHz, Chloroform-*d*) δ = 138.2 (CH), 134.6 (C_q), 131.0 (CH), 121.4 (tq, *J* = 288, 41 Hz, CF₂), 118.7 (qt, *J* = 286, 37 Hz, CF₃), 92.8 (C_q), 32.6 (t, *J* = 4 Hz, CH₂). HRMS (EI): m/z calculated for [C₉H₆F₅IS]⁺ ([M]⁺): 367.9150, measured: 367.9176. IR (ATR): v (cm⁻¹): 3040, 2946, 1906, 1588, 1485, 1400, 1322, 1205, 1094, 1060, 1008, 966, 878, 827, 809, 750, 736, 676, 642, 624, 598, 551.

³ Q. Glenadel, M. Bordy, S. Alazet, A. Tlili, T. Billard, Asian J. Org. Chem. 2016, 5, 428-433.

(Perfluoroethyl)(2,4,6-trichlorobenzyl)sulfane (3d)

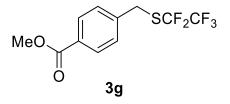
Prepared from 2,4,6-trichlorobenzyl alcohol (**2d**) and BT-SC₂F₅ using General Procedure C. Colourless liquid (166 mg, 0.48 mmol, 96%).

¹H NMR (400 MHz, Chloroform-*d*) δ = 7.37 (s, 2H), 4.44 (s, 2H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ = -83.1 (t, *J* = 4 Hz, 3F), -92.2 (q, *J* = 4 Hz, 2F). ¹³C NMR (101 MHz, Chloroform-*d*) δ = 136.6 (C_q), 135.3 (C_q), 130.1 (C_q), 128.8 (CH), 121.5 (tq, *J* = 288, 41 Hz, CF₂), 118.7 (qt, *J* = 286, 37 Hz, CF₃), 28.2 (t, *J* = 4 Hz, CH₂). HRMS (EI): m/z calculated for [C₉H₄Cl₃F₅S]⁺ ([M]⁺): 343.9014, measured: 343.9037. IR (ATR): v (cm⁻¹): 3089, 2933, 2857, 1726, 1581, 1550, 1441, 1420, 1376, 1321, 1254, 1208, 1135, 1094, 967, 897, 857, 786, 750, 679, 656, 640, 625, 590, 563, 551.

([1,1'-Biphenyl]-4-ylmethyl)(perfluoroethyl)sulfane (3e)

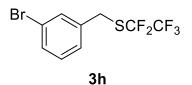
Prepared from biphenyl-4-methanol (2e) and BT-SC₂F₅ using General Procedure C. Colourless solid (144 mg, 0.45 mmol, 90%).

¹H NMR (400 MHz, Chloroform-*d*) δ = 7.68 – 7.59 (m, 4H), 7.56 – 7.37 (m, 5H), 4.25 (s, 2H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ = -83.2 (t, *J* = 4 Hz, 3F), -92.1 (q, *J* = 4 Hz, 2F). ¹³C NMR (101 MHz, Chloroform-*d*) δ = 141.3 (C_q), 140.5 (C_q), 133.7 (C_q), 129.7 (CH), 129.0 (CH), 127.8 (CH), 127.7 (CH), 127.2 (CH), 121.6 (tq, *J* = 288, 41 Hz, CF₂), 118.8 (qt, *J* = 286, 37 Hz, CF₃), 32.8 (t, *J* = 4 Hz, CH₂). HRMS (EI): m/z calculated for [C₁₅H₁₁F₅S]⁺ ([M]⁺): 318.0496, measured: 318.0509. IR (ATR): v (cm⁻¹): 3083, 3033, 2939, 2860, 1977, 1919, 1796, 1683, 1598, 1565, 1522, 1488, 1443, 1408, 1324, 1248, 1199, 1129, 1096, 1007, 966, 843, 751, 769, 735, 714, 690, 638, 625, 593, 540.


((4-tert-Butyl)benzyl)(perfluoroethyl)sulfane (3f)

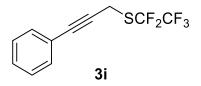
Prepared from 4-*tert*-butylbenzyl alcohol (**2f**) and BT-SC₂F₅ using General Procedure C. Yellow liquid (119 mg, 0.40 mmol, 80%).

¹H NMR (600 MHz, Chloroform-*d*) δ = 7.39 (d, *J* = 8.3 Hz, 2H), 7.30 (d, *J* = 8.1 Hz, 2H), 4.15 (s, 2H), 1.33 (s, 9H). ¹⁹F NMR (565 MHz, Chloroform-*d*) δ = -83.2 (t, *J* = 5 Hz, 3F), -92.3 (q, *J* = 5 Hz, 2F). ¹³C NMR (151 MHz, Chloroform-*d*) δ = 151.4 (C_q), 131.4 (C_q), 128.9 (CH), 126.0 (CH), 123.4 (tq, *J* = 288, 40 Hz, CF₂), 118.7 (qt, *J* = 286, 36 Hz, CF₃), 34.7 (C_q), 32.6 (t, *J* = 4 Hz, CH₂), 31.3 (CH₃). HRMS (EI): m/z calculated for [C₁₃H₁₅F₅S] + ([M]⁺): 298.0815, measured: 298.0840. IR (ATR): v (cm⁻¹): 3028, 2965, 2909, 2869, 1517, 1465, 1414, 1365, 1322, 1269, 1252, 1209, 1095, 1019, 986, 836, 750, 705, 624, 590, 559.


Methyl 4-(((perfluoroethyl)thio)methyl)benzoate (3g)

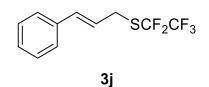
Prepared from methyl 4-(hydroxymethyl)benzoate (**2g**) and BT-SC₂F₅ using General Procedure C. Yellow liquid (128 mg, 0.43 mmol, 85%).

¹H NMR (600 MHz, Chloroform-*d*) δ = 8.02 (d, *J* = 8.3 Hz, 2H), 7.42 (d, *J* = 8.3 Hz, 2H), 4.17 (s, 2H), 3.91 (s, 3H). ¹⁹F NMR (565 MHz, Chloroform-*d*) δ = -83.3 (m, 3F), -92.2 (m, 2F). ¹³C NMR (151 MHz, Chloroform-*d*) δ = 167.3 (C_q), 138.8 (C_q), 130.3 (CH), 130.0 (C_q), 129.1 (CH), 120.5 (tq, *J* = 289, 41 Hz, CF₂), 118.6 (qt, *J* = 286, 36 Hz, CF₃), 52.3 (CH₃), 32.6 (t, *J* = 4 Hz, CH₂). HRMS (EI): m/z calculated for [C₁₁H₉F₅O₂S]⁺ ([M]⁺): 300.0243, measured: 300.0254. IR (ATR): v (cm⁻¹): 3007, 2956, 2848, 1720, 1613, 1578, 1437, 1415, 1323, 1279, 1206, 1180, 1095, 1021, 966, 861, 839, 797, 775, 750, 723, 711, 624, 590, 552.


(3-Bromobenzyl)(perfluoroethyl)sulfane (3h)

Prepared from methyl 3-bromobenzyl alcohol (**2h**) and BT-SC₂F₅ using General Procedure C. Pale red liquid (126 mg, 0.39 mmol, 78%).

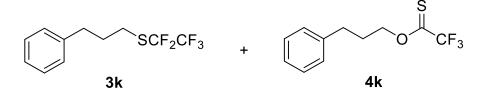
¹H NMR (400 MHz, Chloroform-*d*) δ = 7.52 (t, *J* = 1.8 Hz, 1H), 7.45 (ddd, *J* = 7.8, 2.0, 1.2 Hz, 1H), 7.30 (m, 1H), 7.23 (t, *J* = 7.8 Hz, 1H), 4.11 (s, 2H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ = -83.3 (t, *J* = 4 Hz, 3F), -92.2 (q, *J* = 4 Hz, 2F). ¹³C NMR (101 MHz, Chloroform-*d*) δ = 137.2 (C_q), 132.2 (CH), 131.5 (CH), 130.6 (CH), 127.4 (CH), 122.9 (C_q), 121.4 (tq, *J* = 288, 41 Hz, CF₂), 118.7 (qt, *J* = 286, 37 Hz, CF₃), 32.4 (t, *J* = 4 Hz, CH₂). HRMS (EI): m/z calculated for [C₉H₆BrF₅S]⁺ ([M]⁺): 319.9288, measured: 319.9280. IR (ATR): v (cm⁻¹): 3071, 2949, 1601, 1571, 1476, 1429, 1322, 1206, 1095, 1072, 998, 966, 888, 848, 787, 750, 730, 706, 681, 668, 625, 591, 577, 550.


(Perfluoroethyl)(3-phenylprop-2-yn-1-yl)sulfane (3i)

Prepared from 3-phenylprop-2-yn-1-ol (2i) and BT-SC₂F₅ using General Procedure C. Yellow liquid (108 mg, 0.41 mmol, 81%).

¹H NMR (600 MHz, Chloroform-*d*) δ = 7.44 (dd, *J* = 7.7, 1.8 Hz, 2H), 7.37 – 7.30 (m, 3H), 7.30 (m, 1H), 3.94 (s, 2H). ¹⁹F NMR (565 MHz, Chloroform-*d*) δ = -83.3 (t, *J* = 4 Hz, 3F), -93.2 (q, *J* = 4 Hz, 2F). ¹³C NMR (151 MHz, Chloroform-*d*) δ = 131.9 (CH), 128.9 (CH), 128.5 (CH), 122.3 (C_q), 121.3 (tq, *J* = 289, 41 Hz, CF₂), 118.7 (qt, *J* = 286, 36 Hz, CF₃), 84.9 (C_q), 82.2 (C_q), 18.5 (t, *J* = 6 Hz, CH₂). HRMS (EI): m/z calculated for [C₁₁H₇F₅S]⁺ ([M]⁺): 266.0183, measured: 266.0193. IR (ATR): v (cm⁻¹): 3059, 2928, 2854, 2224, 1729, 1599, 1492, 1443, 1410, 1312, 1271, 1207, 1131, 1095, 1029, 964, 916, 860, 751, 726, 689, 640 625, 551.

(Cinnamyl)(perfluoroethyl)sulfane (3j)³



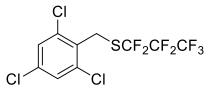
Prepared from cinnamyl alcohol (**2j**) and BT-SC₂F₅ using General Procedure C. Pale yellow liquid (17 mg, 0.063 mmol, 13%).

¹H NMR (400 MHz, Chloroform-*d*) δ = 7.30 – 7.48 (m, 4H), 7.28 (m, 1H), 6.63 (d, *J* = 15.5 Hz, 1H), 6.22 (dt, *J* = 15.5, 7.4 Hz, 1H), 3.77 (d, *J* = 7.4 Hz, 2H). ¹⁹F NMR (377 MHz, Chloroform-*d*) δ = -83.3 (t, *J* = 4 Hz, 3F), -91.9 (t, *J* = 4 Hz, 2F).

The data agree with literature precedents.³

(Perfluoroethyl)(3-phenylpropyl)sulfane (3k) + O-(3-Phenylpropyl) 2,2,2-trifluoroethanethioate (4k)

Prepared from 3-phenylprop-2-yn-1-ol (**2k**) and BT-SC₂F₅ using General Procedure C. Thioether **3k** and thionoester **4k** were isolated as a partially separable mixture. Yellow liquid (76 mg, ratio **3k**:**4k** = 64:36, calculated yield: **3k** = 37%, **4m** = 21%).

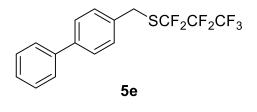

3k: ¹H NMR (600 MHz, Chloroform-*d*) δ = 7.28 – 7.34 (m, 2H), 7.18 – 7.25 (m, 3H), 2.93 (t, *J* = 7.3 Hz, 2H), 2.76 (t, *J* = 7.6 Hz, 2H), 2.04 (pent, *J* = 7.4 Hz, 2H). ¹⁹F NMR (565 MHz, Chloroform-*d*) δ = -83.4 (t, *J* = 4 Hz, 3F), -91.9 (q, *J* = 4 Hz, 2F).

4k: ¹H NMR (600 MHz, Chloroform-*d*) **δ** = 7.28 – 7.34 (m, 2H), 7.18 – 7.25 (m, 3H), 4.57 (t, *J* = 6.4 Hz, 2H), 2.79 (t, *J* = 7.3 Hz, 2H), 2.21 (m, 2H). ¹⁹F NMR (565 MHz, Chloroform-*d*) **δ** = -71.0 (3F).

Mixture (definitive assignment of all peaks to 3k or 4k was not possible): ¹³C NMR (151 MHz, Chloroform-*d*) δ = 196.4 (q, *J* = 39 Hz, C_q), 140.5 (C_q), 140.4 (C_q) 128.8 (CH), 128.7 (CH), 128.57 (CH), 128.56 (CH), 126.5 (CH, 126.4 (CH), 122.0 (tq, *J* = 288, 39 Hz, CF₂), 118.7 (qt, *J* = 286, 37 Hz, CF₃), 115.9 (q, *J* = 280 Hz, CF₃), 73.3 (CH₂), 34.5 (CH₂), 31.9 (CH₂), 31.3 (CH₂), 29.3 (CH₂), 28.0 (t, *J* = 4 Hz, CH₂). HRMS (EI): m/z calculated for $[C_{11}H_{11}F_5S]^+$ ([M]⁺ for 3k): 270.0496, measured: 270.0514. *Note: A molecular ion peak for 4k could not be found, however, a possible fragmentation product was identified: m/z calculated for* $[C_{11}H_{10}F_3O]^+$ ([*M*-SH]⁺ for 4k: 215.0678, measured: 215.0676. IR (ATR, mixture): v (cm⁻¹): 3089, 3068, 3029, 2928, 2859, 1604, 1497, 1455, 1391, 1321, 1289, 1209, 1152, 1097, 1069, 1030, 911, 749, 698, 669, 625, 639, 590, 567, 550.

3.3 Deoxyheptafluoropropylation of Alcohols 2 with BT-SC₃F₇

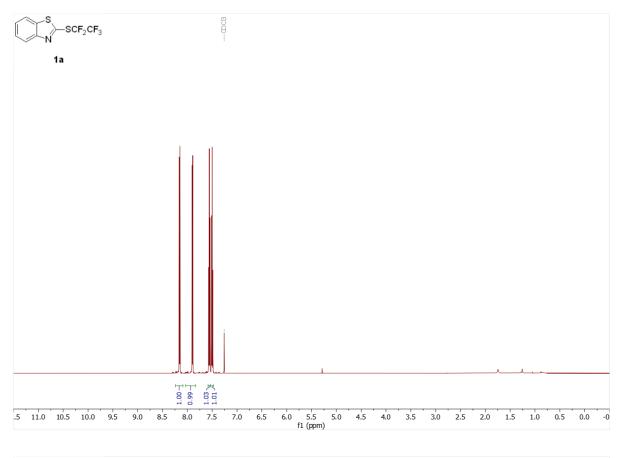
(Perfluoropropyl)(2,4,6-trichlorobenzyl)sulfane (5d)

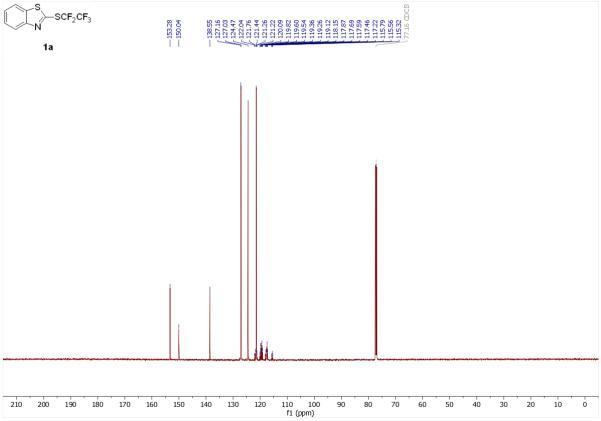


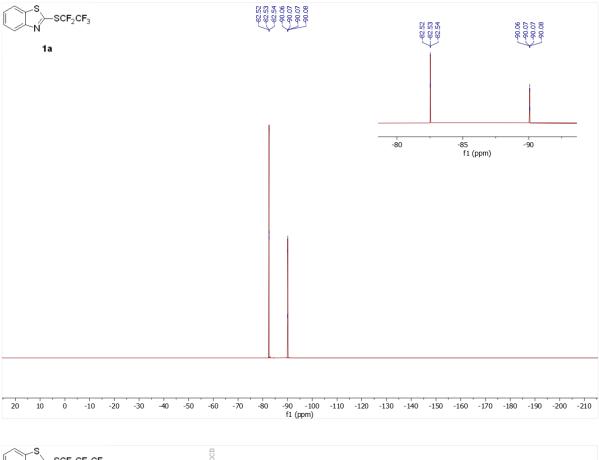
5d

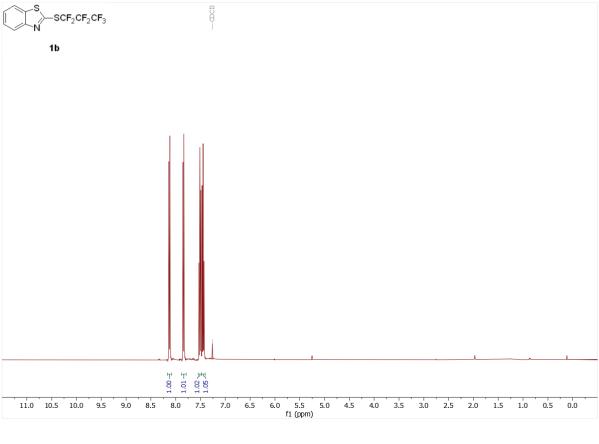
Prepared from 2,4,6-trichlorobenzyl alcohol (**2d**) and BT-SC₃F₇ using General Procedure C. Colourless liquid (196 mg, 0.49 mmol, 98%).

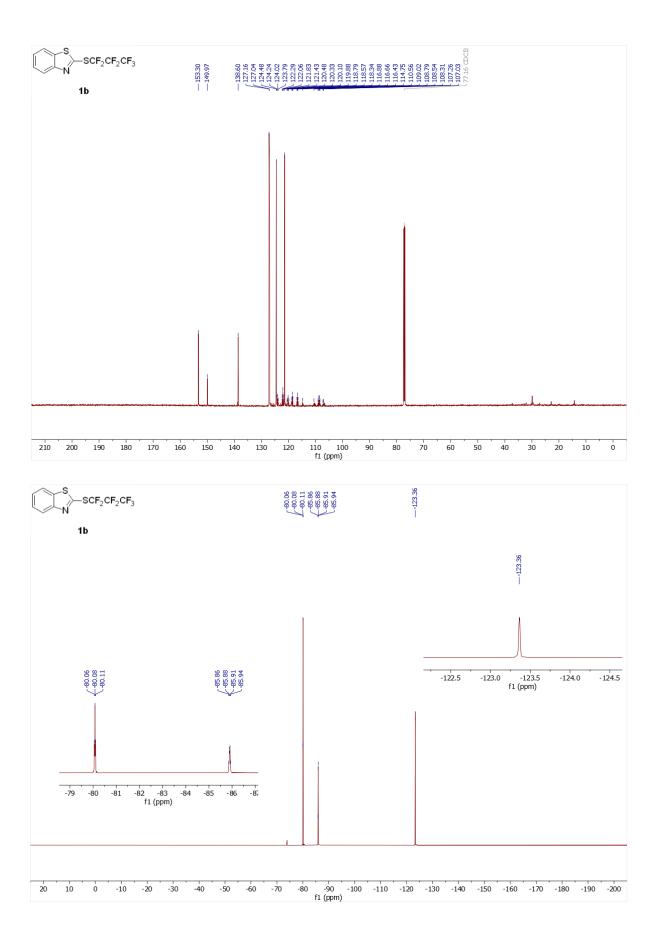
¹H NMR (600 MHz, Chloroform-*d*) δ = 7.38 (s, 2H), 4.44 (s, 2H). ¹⁹F NMR (565 MHz, Chloroform-*d*) δ = -80.0 (t, *J* = 9 Hz, 3F), -88.3 (m, 2F), -123.9 (m, 2F). ¹³C NMR (151 MHz, Chloroform-*d*) δ = 136.6 (C_q), 135.2 (C_q), 130.1 (C_q), 128.8 (CH), 123.8 (tt, *J* = 290, 34 Hz, SCF₂), 117.8 (qt, *J* = 287, 35 Hz, CF₃), 108.7 (tm, *J* = 265 Hz, CF₂), 28.2 (t, *J* = 5 Hz, CH₂). HRMS (EI): m/z calculated for [C₁₀H₄Cl₃F₇S]⁺ ([M]⁺): 393.8982, measured: 393.8983. IR (ATR): v (cm⁻¹): 3083, 2928, 2851, 1726, 1581, 1550, 1528, 1441, 1420, 1376, 1336, 1207, 1184, 1110, 1088, 1072, 1037, 925, 852, 802, 786, 751, 742, 679, 654, 608, 563.

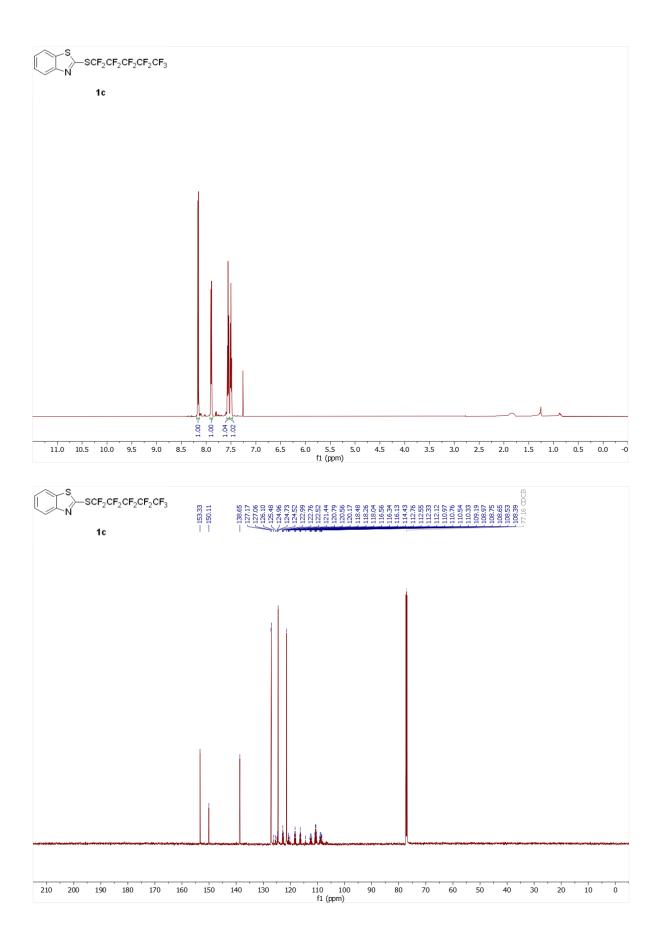

([1,1'-Biphenyl]-4-ylmethyl)(perfluoropropyl)sulfane (5e)

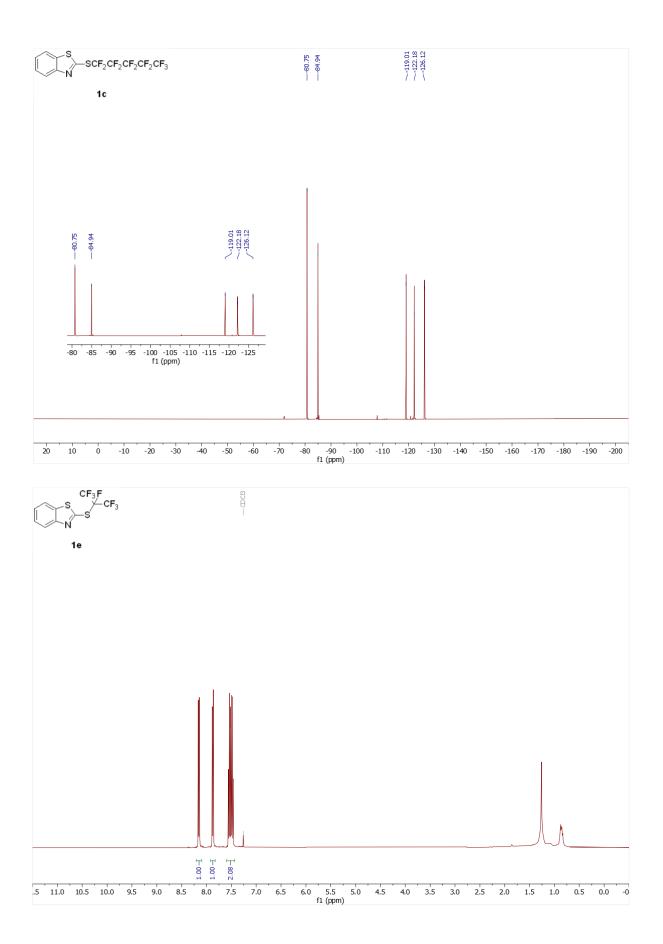



Prepared from biphenyl-4-methanol (2e) and BT-SC₃F₇ using General Procedure C. Pale yellow solid (145 mg, 0.394 mmol, 79%).

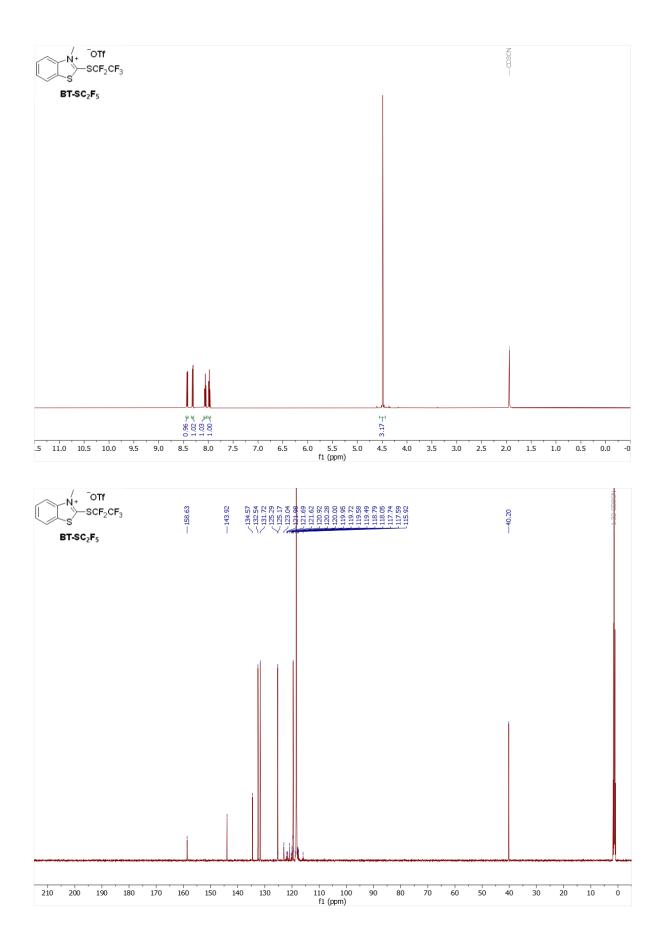

¹H NMR (400 MHz, Chloroform-*d*) δ = 7.59 – 7.65 (m, 4H), 7.44 – 7.52 (m, 4H), 7.41 (m, 1H), 4.25 (s, 2H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ = -80.0 (t, *J* = 9 Hz, 3F), -88.2 (m, 2F), -124.0 (t, *J* = 4 Hz, 2F). ¹³C NMR (101 MHz, Chloroform-*d*) δ = 141.3 (C_q), 140.6 (C_q), 133.6 (C_q), 129.7 (CH), 129.0 (CH), 127.8 (CH), 127.7 (CH), 127.3 (CH), 123.9 (tt, *J* = 289, 34 Hz, SCF₂), 117.9 (qt, *J* = 288, 34 Hz, CF₃), 108.9 (tm, *J* = 265 Hz, CF₂), 32.8 (t, *J* = 4 Hz, CH₂). HRMS (EI): m/z calculated for [C₁₆H₁₁F₇S]⁺ ([M]⁺): 368.0464, measured: 368.0476. IR (ATR): v (cm⁻¹): 3074, 3032, 1520, 1488, 1445, 1407, 1335, 1207, 1183, 1112, 1089, 1037, 1007, 924, 857, 769, 740, 717, 695, 673, 610.

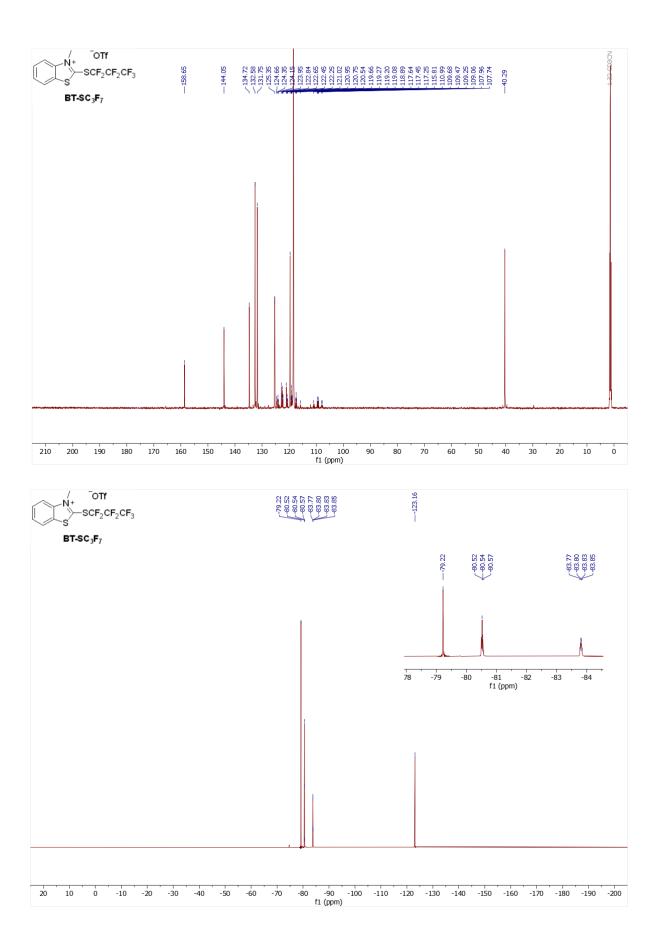

4 NMR Spectra of Novel Compounds

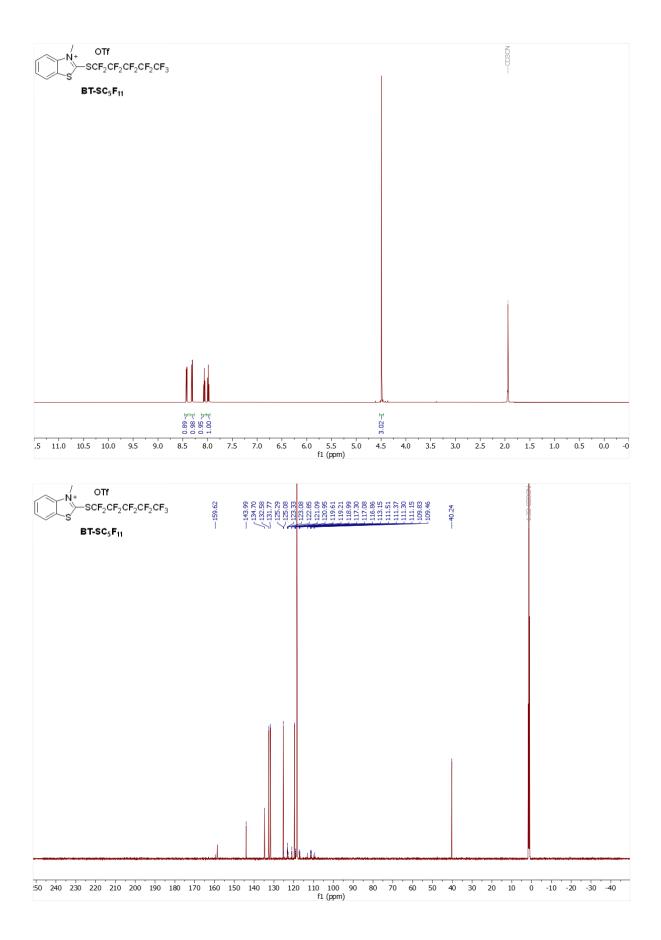


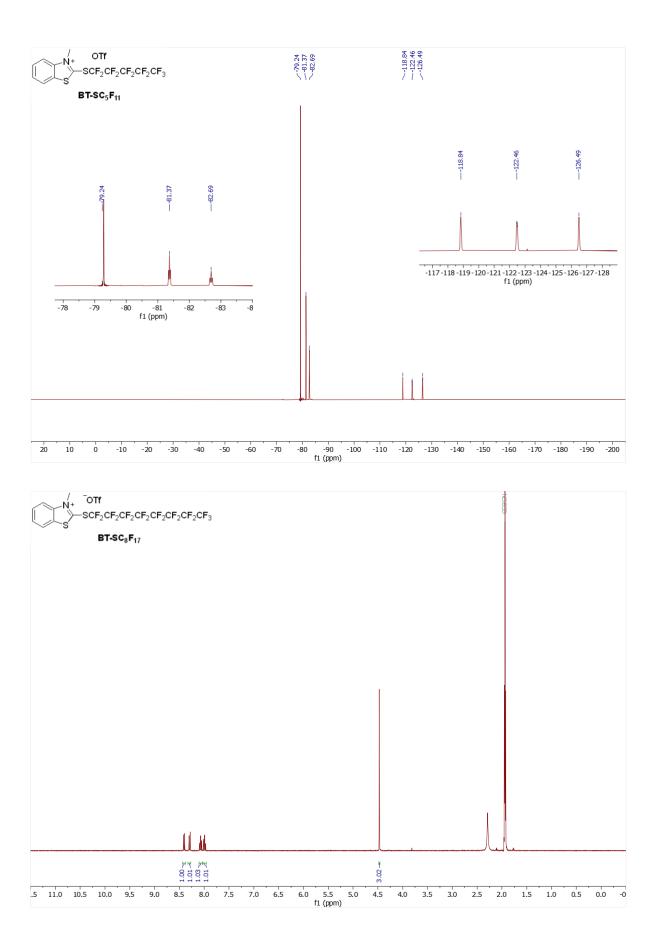




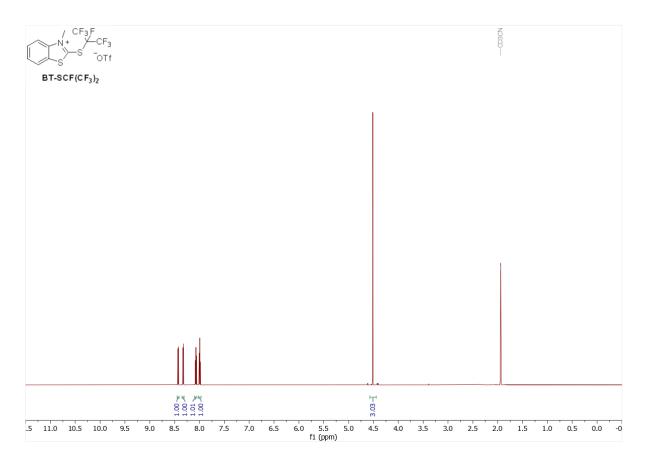


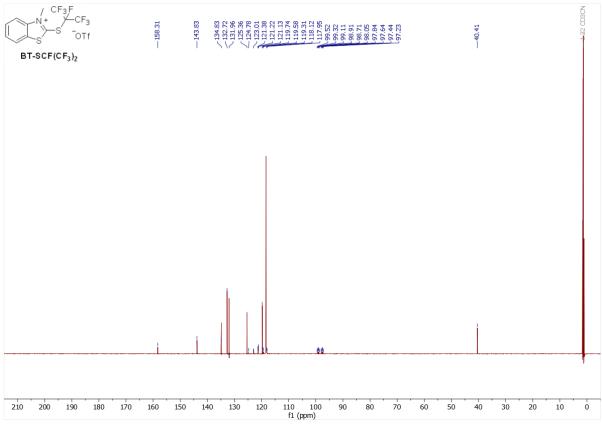


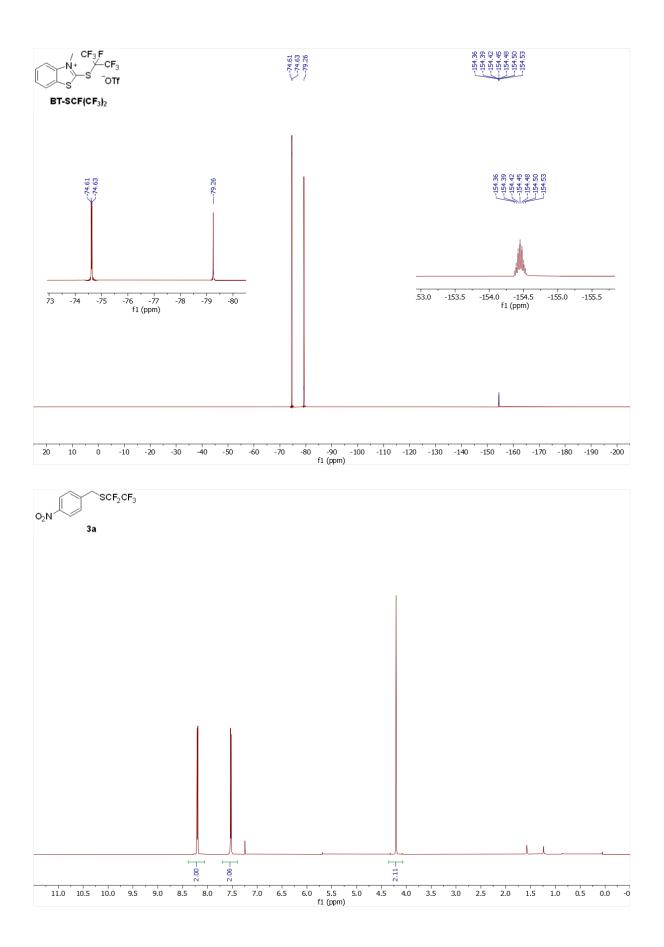


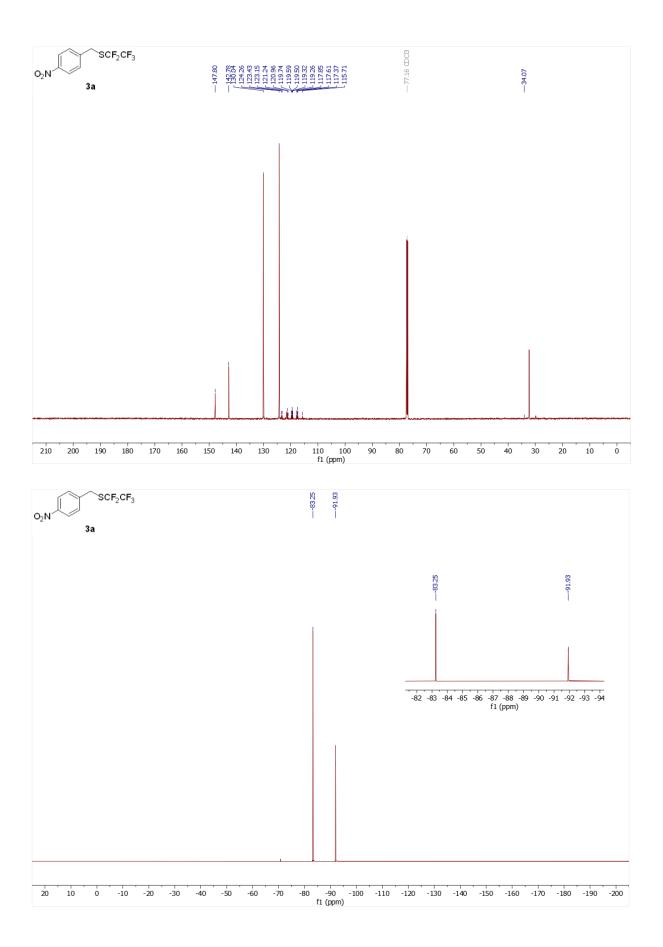


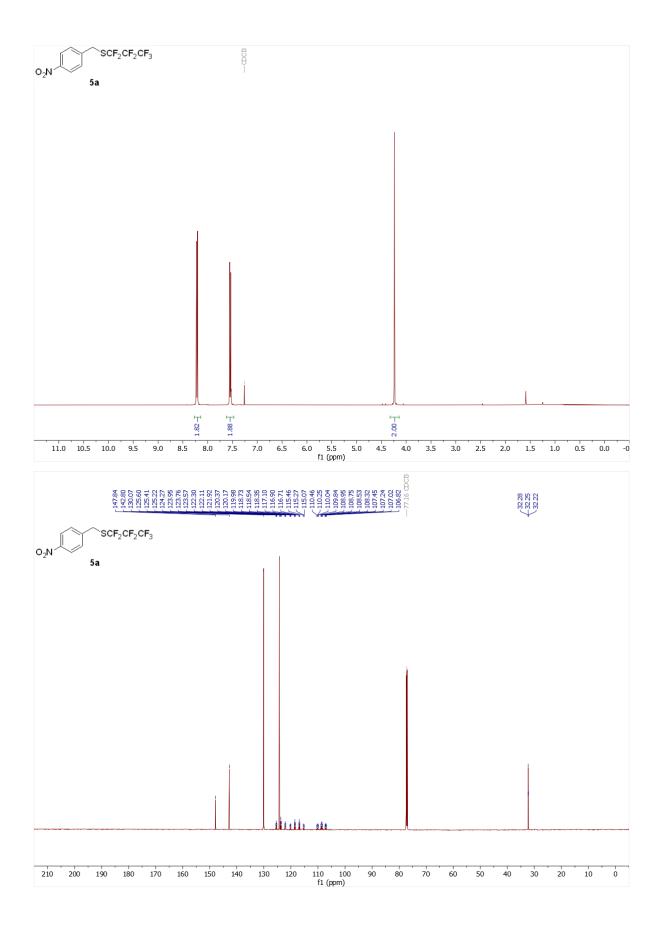


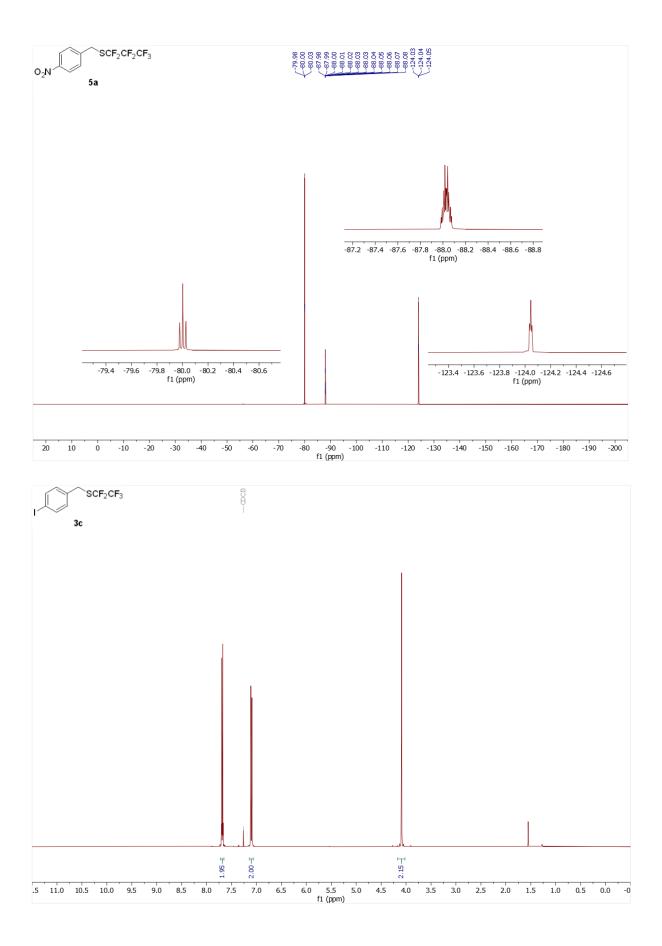


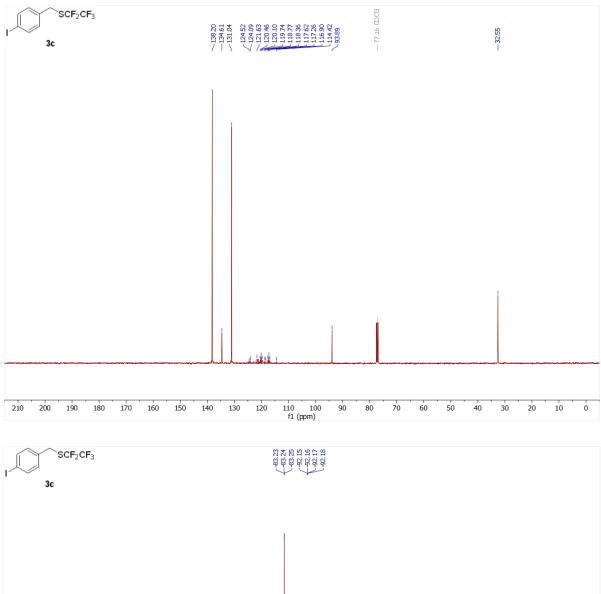


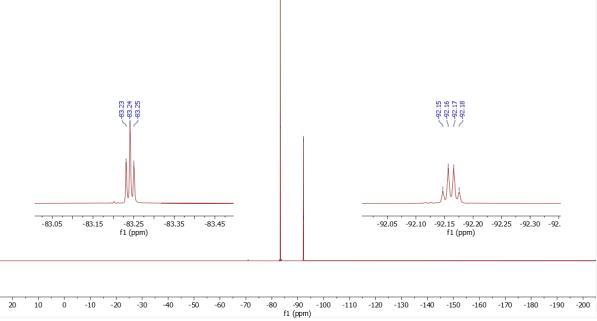


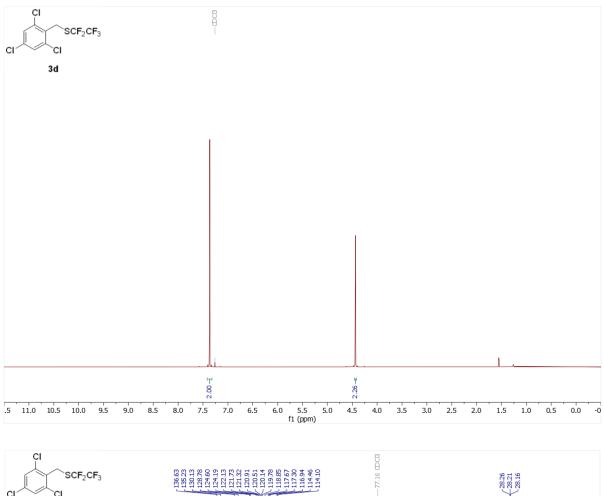


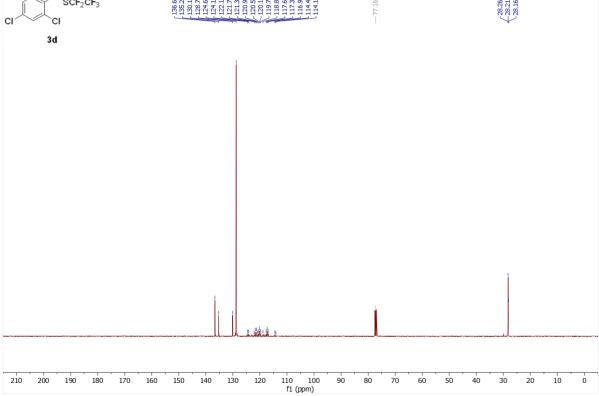


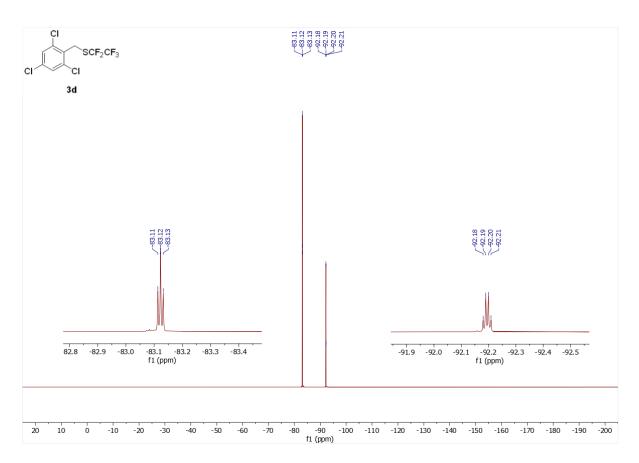


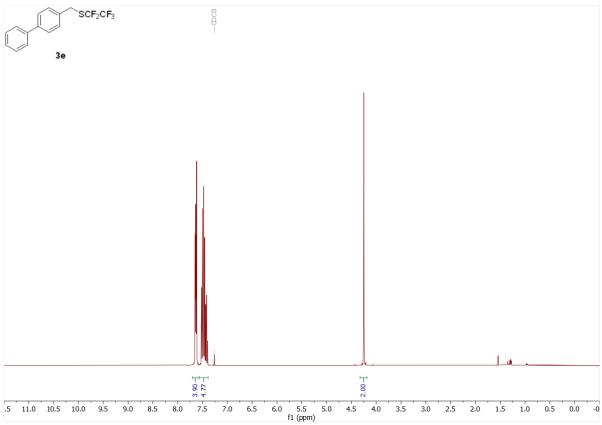


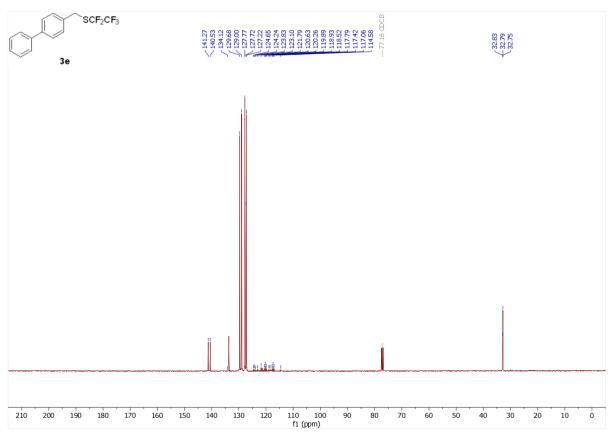


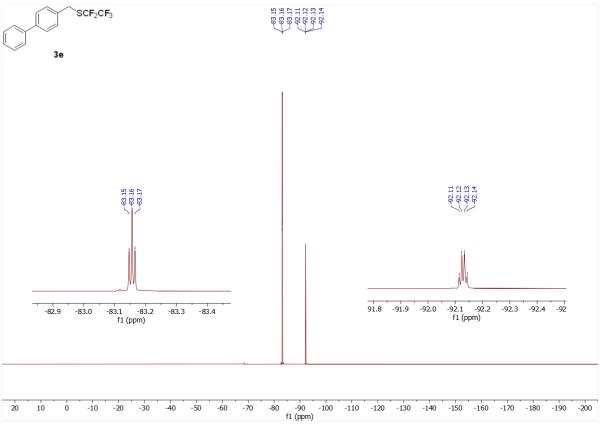


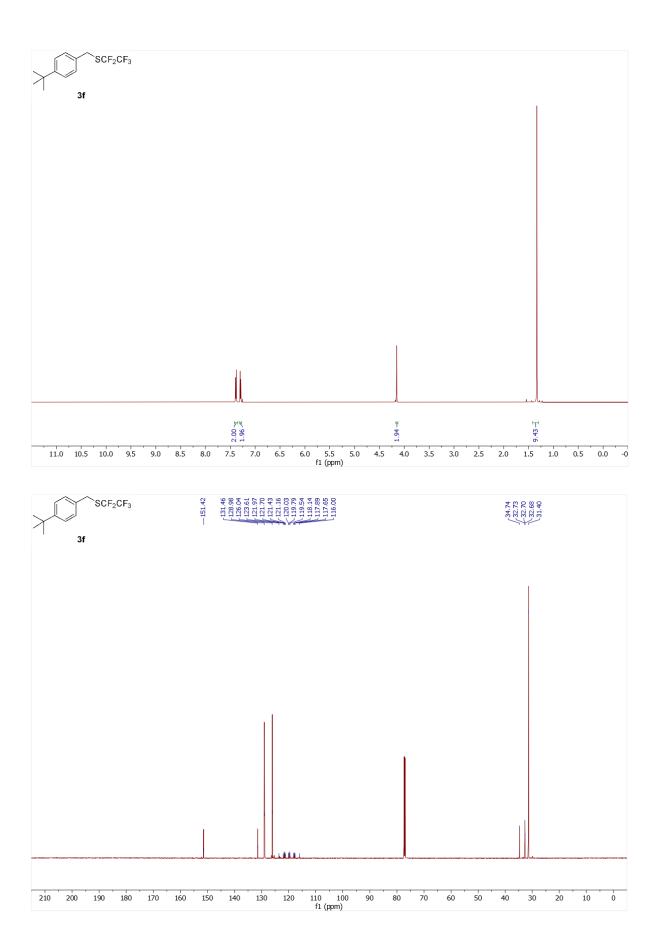


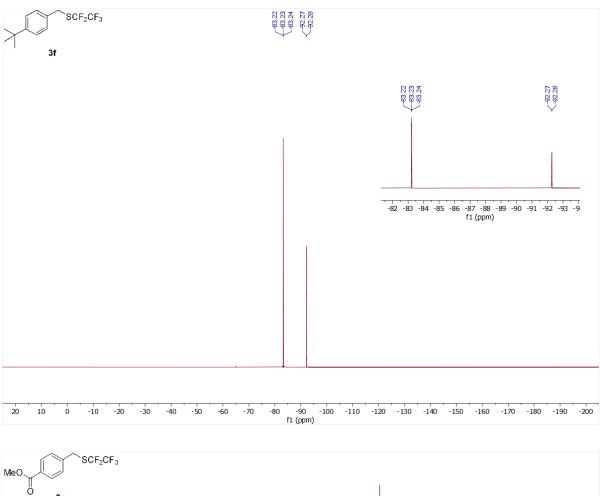


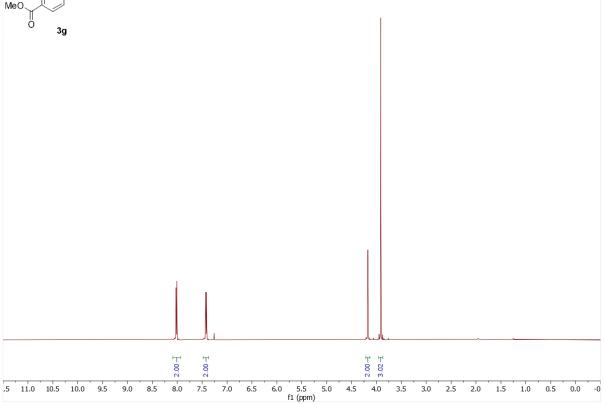


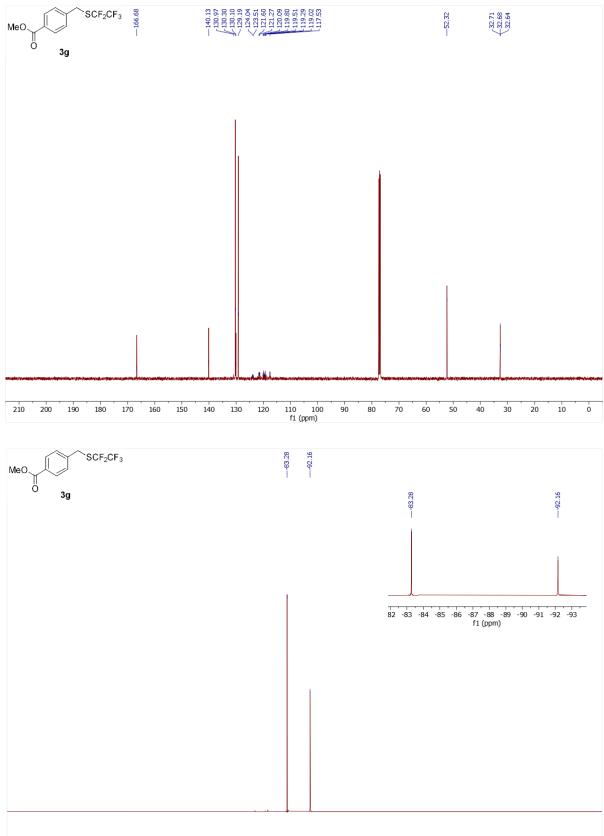


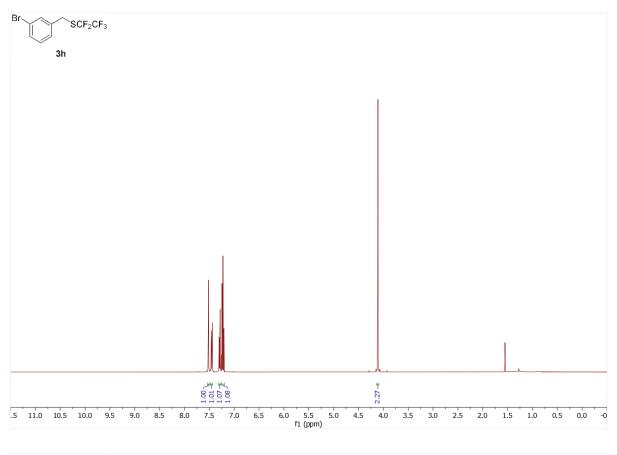


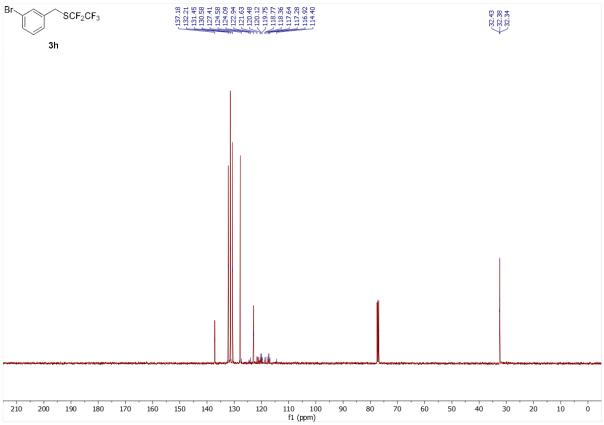




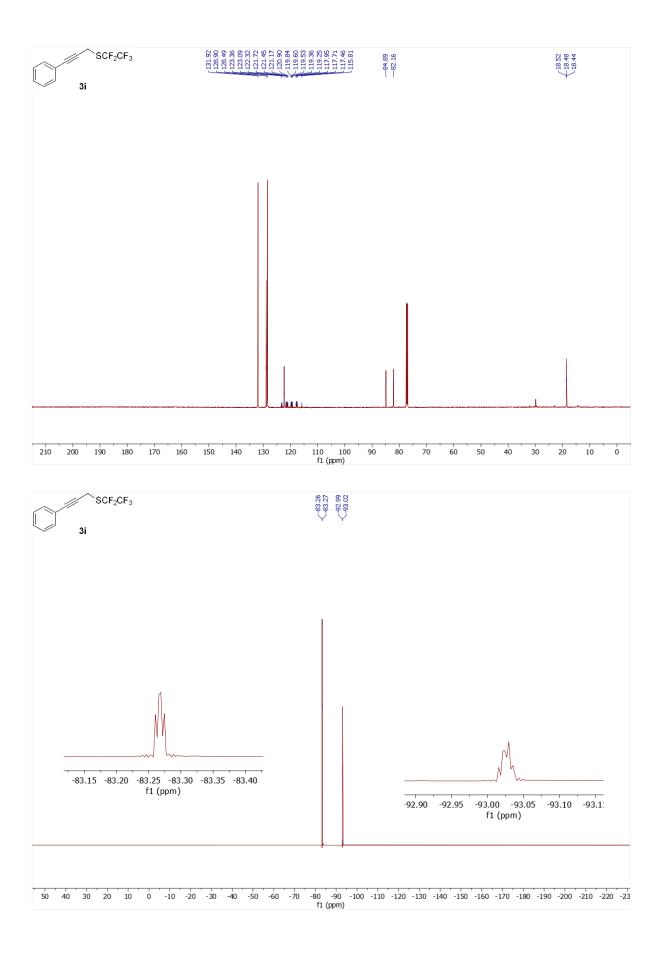


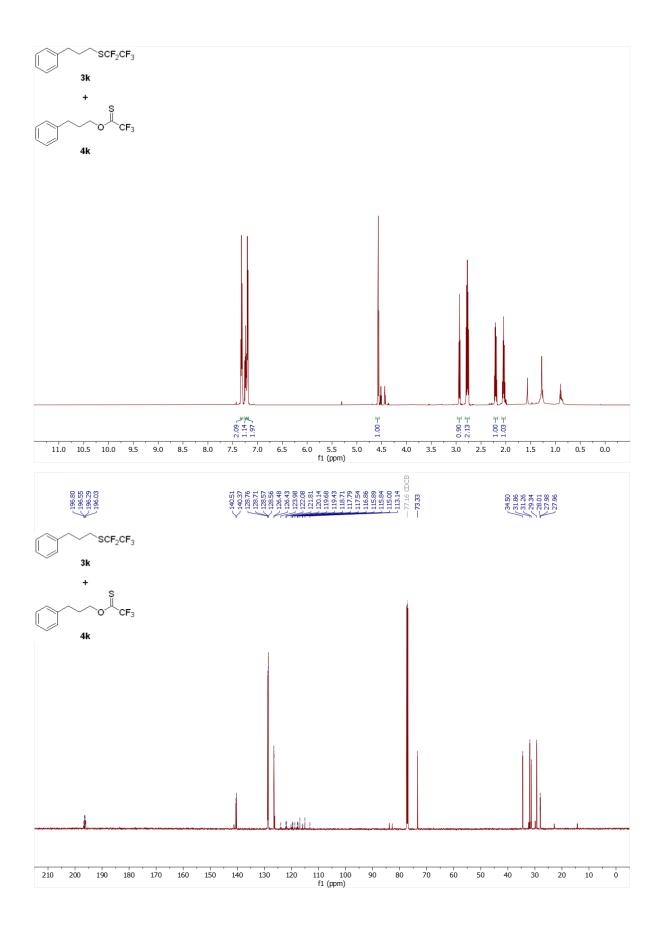











20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm)

