Supporting Information

for

Design, synthesis, and evaluation of chiral thiophosphorus acids as organocatalysts

Karen R. Winters and Jean-Luc Montchamp

Beilstein J. Org. Chem. 2022, 18, 1471-1478. doi:10.3762/bjoc.18.154

Experimental procedures and copies of spectra

Table of contents Page
General chemistry S2
Reagents and solvents S2
Experimental procedures S3
HPLC chromatograms S17
NMR spectra S22

General chemistry.

${ }^{1} \mathrm{H}$ NMR spectra were recorded on a 400 MHz Bruker Avance spectrometer. Chemical shifts for ${ }^{1} \mathrm{H}$ NMR spectra (in parts per million) are relative to internal tetramethylsilane (Me4Si, $\delta=0.00 \mathrm{ppm}$) with deuterated chloroform. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectra were recorded at 101 MHz . Chemical shifts for ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra are reported (in parts per million) relative to $\mathrm{CDCl}_{3}(\delta=77.0 \mathrm{ppm}) .{ }^{31} \mathrm{P}$ NMR spectra were recorded at 162 MHz , and chemical shifts reported (in parts per million) are relative to external 85% phosphoric acid $(\delta=0.0 \mathrm{ppm})$. Flash chromatography experiments were carried out on silica gel premium Rf grade ($40-75 \mu \mathrm{~m}$). Ethyl acetate/hexane or ethyl acetate/methanol mixtures were used as the eluent for chromatographic purifications. TLC plates were visualized by UV or immersion in permanganate potassium (3 g of $\mathrm{KMnO}_{4}, 20 \mathrm{~g}$ of $\mathrm{K}_{2} \mathrm{CO}_{3}, 5 \mathrm{~mL}$ of 5% aq $\mathrm{NaOH}, 300 \mathrm{~mL}$ of water) followed by heating. Chiral HPLC analyses were recorded on an Agilent 1200 Series HPLC system. Chiral HPLC resolutions were done with an (S, S)-Whelk-01 Column $(250 \times 4.6 \mathrm{~mm}, 5 \mu \mathrm{~m})$ from Regis Technologies or CHIRALCEL OD-H from Daicel, using hexanes/isopropanol mixtures as the mobile phase. Mass spectrometry was provided by Louisiana State University Mass Spectrometry Resource. High-resolution mass spectra (HRMS) were obtained by electrospray ionization using a TOF analyzer.

Reagent and solvents.

All starting materials were purchased from commercial sources and used as received, unless otherwise noted. Anhydrous THF and DMF were purchased and used as received. The solvents were distilled under N_{2} and dried according to standard procedures $\left(\mathrm{CH}_{3} \mathrm{CN}\right.$, toluene, and dichloromethane from $\left.\mathrm{CaH}_{2}\right)$.

Experimental procedures.

N-Phenyl tryptophol (6)

To a screw-cap test tube was added Cul (0.05 equiv, 1.5 mmol), tryptophol ($\mathbf{5}$, 1.0 equiv, 31.0 mmol), $\mathrm{K}_{3} \mathrm{PO}_{4}$ (2.1 equiv, 65.1 mmol) and the vessel was evacuated and back-filled with nitrogen. lodobenzene (1.2 equiv, 37.2 mmol), trans- N^{1}, N^{2} -dimethylcyclohexane-1,2-diamine ($10 \mathrm{~mol} \%, 3.1 \mathrm{mmol}$) and toluene (32 mL) were added under nitrogen. The reaction tube was sealed, and the contents were stirred, with heating from an oil bath at $110^{\circ} \mathrm{C}$ overnight. The reaction mixture was cooled to ambient temperature, diluted with ethyl acetate (20 mL), and filtered through a plug of Celite, eluted with additional ethyl acetate $(20 \mathrm{~mL})$. The filtrate was concentrated under vacuum and the resulting residue was purified by column chromatography on silica gel (hexanes/ethyl acetate $95: 05$ to $50: 50$) to provide 6 as a colorless oil ($7.3 \mathrm{~g}, 98 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.72$ (ddd, $J=7.8,1.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}$), $7.62(\mathrm{dt}, J=8.2$, $0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, \mathrm{~J}=5.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.44-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.27-$ $7.19(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.13(\mathrm{td}, J=6.4,0.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.72(\mathrm{~s}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 139.7,136.3,129.7,128.9,126.30,126.28,124.2$, 122.7, 120.1, 119.2, 113.5, 110.7, 62.6, 28.7.

Methyl (2-(1-phenyl-1H-indol-3-yl)ethyl)-H-phosphonate (7)

Synthesis of the tert-butylamine methyl phosphonate salt was made according to a known procedure. ${ }^{1}$ To a solution of tert-butylamine methyl phosphonate salt (1.0 equiv, 1.7 mmol) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(22 \mathrm{~mL})$ was added pivaloyl chloride (1.0 equiv, 1.7 mmol) at room temperature under nitrogen. After stirring for $1 \mathrm{~h}, \mathbf{6}$ (1.0 equiv, 1.7 mmol) was added at room temperature and left to stir overnight. The mixture was washed with saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 2)$. The combined extracts were washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated under vacuum. The residue was purified by column chromatography on silica gel (hexanes/ethyl acetate $8: 2$ to $6: 4$ to $2: 8$) to give 7 colorless oil ($0.5 \mathrm{~g}, 89 \%$). ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.25$ (d); ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl 3) $\delta 7.73-7.69(\mathrm{~m}, 1 \mathrm{H}), 7.68-5.93(\mathrm{~d}, \mathrm{~J}=698.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.57$ $(\mathrm{m}, 1 \mathrm{H}), 7.40-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.20(\mathrm{~m}, 3 \mathrm{H}), 4.50-4.37(\mathrm{~m}, 2 \mathrm{H}), 3.74(\mathrm{~d}, \mathrm{~J}=$ $12.0 \mathrm{~Hz}, 3 \mathrm{H}), 3.28(\mathrm{~d}, \mathrm{~J}=0.9 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.6,136.0$, 129.7, 128.7, 126.4 (d, J = 12.8 Hz), 124.2, 122.7, 120.3, 119.0, 112.2, 110.7, 65.6 (d, $J=6.2 \mathrm{~Hz}), 52.0(\mathrm{~d}, J=5.8 \mathrm{~Hz}), 26.6(\mathrm{~d}, J=6.0 \mathrm{~Hz}) . \mathrm{HRMS}(\mathrm{El}+) \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NO}_{3} \mathrm{P}$ 315.1019, found 316.1093.

1-Methoxy-9-phenyl-3,4,9-trihydro[1,2]oxaphosphinino[3,4-b]indole 1-oxide (8)

To a solution of 7 (1.0 equiv, 2.2 mmol) in acetic acid (15 mL) was added $\mathrm{Mn}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%, 0.111 \mathrm{mmol}), \mathrm{MnO}_{2}$ (85% activated, 3.0 equiv, 6.6 mmol), and sodium acetate (3.0 equiv, 6.6 mmol). The suspension was stirred overnight at $70^{\circ} \mathrm{C}$ under nitrogen. The reaction mixture was cooled to room temperature, diluted with ethyl acetate (20 mL) and a 0.1 M aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$ saturated with NaCl (20 mL) was added. The mixture was stirred for 5 min and the suspension was filtered
over Celite. The organic layer was washed with aqueous solutions of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$ saturated with $\mathrm{NaCl}(20 \mathrm{~mL} \times 2)$ and saturated $\mathrm{NaHCO}_{3}(20 \mathrm{~mL} \times 5)$. The combined extracts were washed with brine, dried with MgSO_{4}, filtered, and concentrated under vacuum. The residue was purified by column chromatography on silica gel (hexanes/ethyl acetate $90: 10$ to $0: 100$) to give 8 as a colorless oil ($0.3 \mathrm{~g}, 43 \%$). ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.1 \mathrm{ppm}(\mathrm{s}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.66-7.61$ $(\mathrm{m}, 3 \mathrm{H}), 7.57(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.42-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{~m}, 1 \mathrm{H}), 4.82-$ 4.57 (m, 2H), 3.48 (d, $J=11.6 \mathrm{~Hz}, 3 \mathrm{H}$), 3.24 (dddd, $J=16.7,6.7,4.4,2.7 \mathrm{~Hz}, 2 \mathrm{H}$); HRMS (EI+) $m / z[M+H]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{NO}_{3} \mathrm{P} 313.0862$, found 314.0951.

1-Methoxy-9-phenyl-3,4,9-trihydro[1,2]oxaphosphinino[3,4-b]indole 1-sulfide (9)

To a solution of 8 (1.0 equiv, 6.7 mmol) in anhydrous toluene (40 mL) was added Lawesson's Reagent (0.6 equiv, 4.0 mmol) under nitrogen. The solution was refluxed for 16 h , cooled to room temperature, and concentrated under vacuum. The residue was purified by column chromatography on silica gel (hexanes/ethyl acetate 98:02 to 80:20) to give 9 as a colorless oil (1.2 g, 54\%). $\left.{ }^{31} \mathrm{P} \mathrm{NMR} \mathrm{(162} \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 67.8 \mathrm{ppm}$ (s); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.69-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.53(\mathrm{~m}, 5 \mathrm{H}), 7.33(\mathrm{dd}, J=8.6$, $6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{dd}, J=8.0,6.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.68(\mathrm{dq}, J=17.6,4.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.66(\mathrm{~d}, J=$ $14.5 \mathrm{~Hz}, 3 \mathrm{H}), 3.42-3.10(\mathrm{~m}, 2 \mathrm{H})$.

1-Hydroxy-3,4,9-trihydro-[1,2]oxaphosphinino[3,4-b]indole 1-sulfide (1)

To a reaction tube was added 9 (1.0 equiv, 0.16 mmol) in anhydrous $\mathrm{CH}_{3} \mathrm{CN}$ (6 mL) and 1,4-diazabicyclo[2.2.2]octane (1.0 equiv, 0.16 mmol). The tube was placed in a synthesizer and stirred for 12 h at $85^{\circ} \mathrm{C}$ under nitrogen. The solution was cooled to room temperature, acidified with $1 \mathrm{M} \mathrm{HCl}(10 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(10 \mathrm{~mL} \times 2)$. The combined extracts were dried with MgSO_{4}, filtered and condensed under vacuum to yield 1 (NMR yield: 100%). ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 49.0 \mathrm{ppm}$ (s).

3-Allylindole (10)

To a reaction tube was added indole (1 equiv, 20 mmol) and allyl alcohol (1.5 equiv, 30 mmol) in THF (90 mL). The tube was flushed with argon for 10 minutes. Next, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol} \%, 1 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~B}(30 \mathrm{~mol} \%, 6 \mathrm{mmol}, 1 \mathrm{M}$ in THF) were added and flushed with argon for 10 minutes. The tube was sealed and brought to $50^{\circ} \mathrm{C}$ in an oil bath for 16 h . The reaction mixture was then cooled to rt and diluted with ethyl acetate (40 mL). The solution was transferred to a separatory funnel and washed with a saturated aqueous solution of NaHCO_{3} and brine. The organic layer was dried over MgSO_{4}, filtered and concentrated under vacuum. The crude product was purified by column chromatography on silica gel (hexanes/ethyl acetate 95:5) to give 10 as a yellow oil ($2.5 \mathrm{~g}, 80 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.83-7.76(\mathrm{~m}, 2 \mathrm{H})$, $7.45-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.01(\mathrm{dt}, J=2.1,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{ddt}, J=17.1,10.0,6.5 \mathrm{~Hz}$, 1H), $5.44-5.12(\mathrm{~m}, 2 \mathrm{H}), 3.74-3.65(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 137.5$, $136.5,127.5,122.1,121.9,119.4,119.3,115.4,114.5,111.3,30.0$.

In a round-bottomed flask was added $\operatorname{EtOP}(\mathrm{O}) \mathrm{H}_{2}$ (1.5 equiv, $47.7 \mathrm{mmol}, 0.5 \mathrm{M}$ in $\mathrm{CH}_{3} \mathrm{CN}$), 10 (1 equiv, 31.8 mmol), $\mathrm{Pd}_{2} \mathrm{dbaa}_{3} \cdot \mathrm{CHCl}_{3}(0.5 \mathrm{~mol} \%, 0.3 \mathrm{mmol}$), and xantphos ($1.2 \mathrm{~mol} \%, 0.38 \mathrm{mmol}$). The flask was flushed with argon for 10 min then brought to reflux for 18 h . After cooling to rt , the mixture was diluted with ethyl acetate (60 mL). The solution was transferred to a separatory funnel and washed with a saturated aqueous solution of NaHCO_{3} and brine. The organic layer was dried over MgSO_{4}, filtered, and concentrated under vacuum. The crude product was purified by column chromatography on silica gel (ethyl acetate/methanol 100:0 to 90:10) to give 11 as an oil ($4.88 \mathrm{~g}, 63 \%$). ${ }^{31} \mathrm{P}$ NMR (162 MHz, CDCl 3) $\delta 39.2$ ($\mathrm{d}, \mathrm{J}=528.3 \mathrm{~Hz}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.75(\mathrm{dt}, J=526.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{dt}, J=8.0,1.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.39(\mathrm{dt}, J=8.1,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{ddd}, J=8.2,7.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{ddd}, J=$ 8.0, 7.0, 1.1 Hz, 1H), 6.99 (d, J = 2.4 Hz, 1H), $4.36-3.94(\mathrm{~m}, 3 \mathrm{H}), 2.95-2.86(\mathrm{~m}, 2 \mathrm{H})$, $2.06-1.97$ (m, 2H), 1.87 (dddd, $J=15.2,9.3,6.7,3.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.37(\mathrm{~d}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 136.4,127.3,122.1,121.7,119.3(\mathrm{~d}, J=54.9 \mathrm{~Hz})$, $114.9,111.2,62.4(\mathrm{~d}, J=7.0 \mathrm{~Hz}), 28.9,27.9,25.8(\mathrm{~d}, J=16.5 \mathrm{~Hz}), 21.4(\mathrm{~d}, J=2.8 \mathrm{~Hz})$, $16.3(\mathrm{~d}, J=6.2 \mathrm{~Hz})$; HRMS (EI+) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}_{2} \mathrm{P}$ 251.107, found 252.1148.

1-Ethoxy-2,3,4,9-tetrahydrophosphinino[2,3-b]indole 1-oxide (12)

To a reaction tube was added 11 (1 equiv, 1.2 mmol), silver(I) acetate (3 equiv, 3.5 mmol) in DCE (8 mL) and flushed with argon for 10 min . The tube was brought to $90^{\circ} \mathrm{C}$ in an oil bath for 18 h . The reaction mixture was then cooled to rt , diluted with DCM (15 mL) and filtered over Celite. The filtrate was concentrated under vacuum and the crude product purified by column chromatography on silica gel (hexanes/ethyl acetate $20: 80$ to $10: 90$) to afford 12 as a tan solid ($0.2 \mathrm{~g}, 73 \%$). ${ }^{31} \mathrm{P}$ NMR (162 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 34.1$ (s); ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) ~ \delta 11.74(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-7.53$ $(\mathrm{m}, 2 \mathrm{H}), 7.36-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.14(\mathrm{ddd}, \mathrm{J}=8.1,7.1,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.36-4.10(\mathrm{~m}, 2 \mathrm{H})$, $3.19-2.82(\mathrm{~m}, 2 \mathrm{H}), 2.68-2.25(\mathrm{~m}, 3 \mathrm{H}), 2.23-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.24(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 138.8(\mathrm{~d}, J=11.6 \mathrm{~Hz}), 126.1(\mathrm{~d}, J=12.0 \mathrm{~Hz}), 125.7(\mathrm{~d}$, $J=15.0 \mathrm{~Hz}), 124.6,123.5,122.2,120.1-119.3(\mathrm{~m}), 112.7(\mathrm{~d}, J=1.4 \mathrm{~Hz}), 61.9(\mathrm{~d}, J=$ $6.8 \mathrm{~Hz}), 27.5,26.5,22.6(\mathrm{dd}, J=10.0,5.0 \mathrm{~Hz}), 16.5(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}) ; \mathrm{HRMS}(\mathrm{El}+) \mathrm{m} / \mathrm{z}$ $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{NO}_{2} \mathrm{P}$ 249.0913, found 250.0990.

1-Ethoxy-9-phenyl-2,3,4,9-tetrahydrophosphinino[2,3-b]indole 1-oxide (13a)

To a round-bottomed flask was added 12 (1 equiv, 4 mmol), iodobenzene (1.2 equiv, 4.8 mmol), $\mathrm{K}_{3} \mathrm{PO}_{4}$ (2.1 equiv, 8.4 mmol), $\mathrm{Cul}(5 \mathrm{~mol} \%, 0.2 \mathrm{mmol}$), and DMEDA ($10 \mathrm{~mol} \%, 0.4 \mathrm{mmol}$) in toluene $(20 \mathrm{~mL})$. The flask was flushed with argon for 10 min then the mixture was brought to reflux for 18 h . After cooling to rt , the solvent was evaporated under vacuum. The crude was dissolved in DCM and transferred to a separatory funnel. The organic layer was washed with $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq})$, then washed with brine. The organic layer was separated and dried with MgSO_{4}, filtered, and concentrated under vacuum. The crude product was purified by column
chromatography on silica gel (hexanes/ethyl acetate $25: 75$) to afford the pure product 13a as a colorless oil ($1 \mathrm{~g}, 77 \%$). ${ }^{31} \mathrm{P}$ NMR (162 MHz, CDCl 3) $\delta 32.2$ (s); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.66(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.49-7.41(\mathrm{~m}$, $1 \mathrm{H}), 7.35-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.20$ (ddd, $J=7.8,6.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.89-3.73(\mathrm{~m}, 1 \mathrm{H}), 3.67$ $-3.50(\mathrm{~m}, 1 \mathrm{H}), 3.12-2.98(\mathrm{~m}, 2 \mathrm{H}), 2.50-2.28(\mathrm{~m}, 2 \mathrm{H}), 2.26-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.03(\mathrm{~d}$, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 139.4(\mathrm{~d}, \mathrm{~J}=9.2 \mathrm{~Hz}), 138.5,129.2$, 128.0, $127.8(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 127.6(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 126.5(\mathrm{~d}, J=12.5 \mathrm{~Hz}), 126.2,125.3$, $120.4,120.0(\mathrm{~d}, J=1.7 \mathrm{~Hz}), 111.1,60.9(\mathrm{~d}, J=6.2 \mathrm{~Hz}), 28.4(\mathrm{~d}, J=99.1 \mathrm{~Hz}), 23.1(\mathrm{~d}$, $J=4.0 \mathrm{~Hz}), 21.8(\mathrm{~d}, J=5.8 \mathrm{~Hz}), 16.4(\mathrm{~d}, J=6.2 \mathrm{~Hz}) ; \mathrm{HRMS}(\mathrm{El}+) \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{2} \mathrm{NO}_{2} \mathrm{P}$ 325.1226, found 326.1303.

1-Ethoxy-9-(p-nitrophenyl)-2,3,4,9-tetrahydrophosphinino[2,3-b]indole 1-oxide (13b)

To a round-bottomed flask was added 12 (1 equiv, 1.5 mmol), iodo-nitrobenzene (1.2 equiv, 1.8 mmol), $\mathrm{K}_{3} \mathrm{PO}_{4}$ (2.1 equiv, 3.1 mmol), Cul ($5 \mathrm{~mol} \%, 0.075 \mathrm{mmol}$), and DMEDA ($10 \mathrm{~mol} \%, 0.15 \mathrm{mmol}$) in toluene $(10 \mathrm{~mL})$. The flask was flushed with argon for 10 min then the mixture was brought to reflux for 18 h . After cooling to rt , the solvent was evaporated under vacuum. The crude was dissolved in DCM and transferred to a separatory funnel. The organic layer was washed with $\mathrm{NH}_{4} \mathrm{Cl}$ (sat. aq), then washed with brine. The organic layer was separated and dried with MgSO_{4}, filtered, and concentrated under vacuum. The crude product was purified by column chromatography on silica gel (hexanes/ethyl acetate $25: 75$) to afford 13b as a yellow solid ($0.4 \mathrm{~g}, 73 \%$). ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 32.2$ (s); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
$\delta 8.47-8.38(\mathrm{~m}, 2 \mathrm{H}), 7.97-7.89(\mathrm{~m}, 2 \mathrm{H}), 7.67(\mathrm{dt}, J=8.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.32$ (m, 2H), $7.30-7.22(\mathrm{~m}, 1 \mathrm{H}), 3.96-3.73(\mathrm{~m}, 2 \mathrm{H}), 3.05(\mathrm{td}, \mathrm{J}=6.0,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.38$ $(\mathrm{s}, 2 \mathrm{H}), 2.29-2.04(\mathrm{~m}, 2 \mathrm{H}), 1.11(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 146.4, 144.4, $138.8(\mathrm{~d}, J=8.8 \mathrm{~Hz}), 129.8(\mathrm{~d}, J=14.0 \mathrm{~Hz}), 127.8,127.2(\mathrm{~d}, J=12.3$ $\mathrm{Hz}), 126.9(\mathrm{~d}, J=137.5 \mathrm{~Hz}), 126.3,124.8,121.5,120.4(\mathrm{~d}, J=1.5 \mathrm{~Hz}), 110.7(\mathrm{~d}, J=$ $1.6 \mathrm{~Hz}), 61.1(\mathrm{~d}, J=6.0 \mathrm{~Hz}), 27.9(\mathrm{~d}, J=98.2 \mathrm{~Hz}), 23.1(\mathrm{~d}, J=4.1 \mathrm{~Hz}), 21.5(\mathrm{~d}, J=$ $6.1 \mathrm{~Hz}), 16.5(\mathrm{~d}, \mathrm{~J}=5.9 \mathrm{~Hz}) ; \operatorname{HRMS}(\mathrm{El}+) \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}$ 370.1077 , found 371.1151 .

9-Phenyl-1-(((S)-1-phenylethyl)amino)-2,3,4,9-tetrahydrophosphinino[2,3-b]indole 1oxide (14b)

To a round-bottomed flask was added 13a (1 equiv, 2 mmol) in DCM (5 mL). Oxalyl chloride (2 equiv, 4 mmol) was added dropwise followed by DMF ($10 \mathrm{~mol} \%$, $0.2 \mathrm{mmol})$. The reaction mixture was brought to reflux and stirred for 24 h under argon. To a separate flask was added (S)-1-phenylethylamine (2 equiv, $4 \mathrm{mmol}^{\text {) , } \mathrm{Et}_{3} \mathrm{~N}}$ (2 equiv, 4 mmol), and DMAP (0.1 equiv, 0.2 mmol) in $\mathrm{DCM}(5 \mathrm{~mL})$. To this the $\mathrm{P}(\mathrm{O}) \mathrm{Cl}$ mixture was added via cannula at rt and stirred for 24 h . The reaction mixture was transferred to a separatory funnel and washed with NaHCO_{3} (sat. aq), $\mathrm{NH}_{4} \mathrm{Cl}$ (sat. aq), and then brine. The organic layer was separated, dried with MgSO_{4}, filtered, and concentrated under vacuum. The mixture was concentrated under vacuum and directly purified and resolved by column chromatography on silica gel (hexanes/ethyl acetate $30: 70$) to afford the phosphoramide 14a as a beige solid ($0.7 \mathrm{~g}, 85 \%$, resolved yield 47\%). Mixture: ${ }^{31} \mathrm{P}$ NMR (162 MHz, CDCl_{3}) $\delta 23.5$ (s), 20.4 (s); Resolved: ${ }^{31} \mathrm{P}$ NMR
(162 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 23.6(\mathrm{~s}) ;{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.70-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.55-$ $7.39(\mathrm{~m}, 3 \mathrm{H}), 7.36-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.26-7.18(\mathrm{~m}, 4 \mathrm{H}), 7.16(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.28$ (dtt, $J=13.6,9.1,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.02-2.80(\mathrm{~m}, 2 \mathrm{H}), 2.65(\mathrm{dd}, J=10.6,8.9 \mathrm{~Hz}, 1 \mathrm{H})$, 2.26 (ddtdd, $J=17.0,8.0,6.0,4.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.11$ (dddd, $J=20.6,9.4,4.4,2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.04-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.02(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 145.9(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 139.3(\mathrm{~d}, J=8.2 \mathrm{~Hz}), 138.5,129.2,128.8$, 128.5, 127.9, $127.7(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 126.9,126.7(\mathrm{~d}, J=11.4 \mathrm{~Hz}), 126.2,125.8,125.3$, $120.5,120.0(\mathrm{~d}, J=1.5 \mathrm{~Hz}), 111.1(\mathrm{~d}, J=1.5 \mathrm{~Hz}), 49.9,30.6(\mathrm{~d}, J=93.6 \mathrm{~Hz}), 25.5(\mathrm{~d}$, $J=6.0 \mathrm{~Hz}), 23.3(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 21.5(\mathrm{~d}, J=5.8 \mathrm{~Hz})$.

9-(4-Nitrophenyl)-1-(((S)-1-phenylethyl)amino)-2,3,4,9-tetrahydrophosphinino[2,3b]indole 1-oxide (14b)

To a round-bottomed flask was added 13b (1 equiv, 0.4 mmol) in DCM (2 mL). Oxalyl chloride (2 equiv, 0.81 mmol) was added dropwise followed by DMF ($10 \mathrm{~mol} \%$, 0.04 mmol). The reaction mixture was brought to reflux and stirred for 24 h under argon. To a separate flask was added (S)-1-phenylethylamine (2 equiv, 0.81 mmol), $\mathrm{Et}_{3} \mathrm{~N}$ (2 equiv, 0.81 mmol), and DMAP (0.1 equiv, 0.04 mmol) in DCM (1 mL). To this the $\mathrm{P}(\mathrm{O}) \mathrm{Cl}$ mixture was added via cannula at rt, and stirred for 24 h . The reaction mixture was transferred to a separatory funnel and washed with NaHCO_{3} (sat. aq), $\mathrm{NH}_{4} \mathrm{Cl}$ (sat. aq), and then brine. The organic layer was separated, dried with MgSO_{4}, filtered, and concentrated under vacuum. The mixture was concentrated under vacuum and directly purified and resolved by column chromatography on silica gel
(hexanes/ethyl acetate 30:70) to afford the product 14b (0.12 g, 67\%, resolved 20\%). Mixture: ${ }^{31} \mathrm{P}$ NMR (162 MHz, CDCl_{3}) $\delta 22.3$ (s), 21.3 (s); Resolved: ${ }^{31} \mathrm{P}$ NMR (162 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 20.4(\mathrm{~s}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.34(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{td}, J=13.6,8.1 \mathrm{~Hz}, 5 \mathrm{H}), 7.06-7.01(\mathrm{~m}, 2 \mathrm{H})$, $6.96(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{q}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{dd}, J=16.9,4.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.40$ $(\mathrm{s}, 3 \mathrm{H}), 2.22-2.17(\mathrm{~m}, 1 \mathrm{H}), 2.07-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.03(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl3) $\delta 146.0,144.8,144.1,138.6(\mathrm{~d}, J=7.5 \mathrm{~Hz}), 131.0,130.5,128.6(\mathrm{~d}$, $J=4.0 \mathrm{~Hz}), 127.2(\mathrm{~d}, J=8.3 \mathrm{~Hz}), 126.3,125.5,124.8,121.6,120.5,110.8(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}), 50.5(\mathrm{~d}, J=15.4 \mathrm{~Hz}), 30.6(\mathrm{~d}, J=9.1 \mathrm{~Hz}), 29.7(\mathrm{~d}, J=8.9 \mathrm{~Hz}), 26.1(\mathrm{dd}, J=$ $13.0,5.9 \mathrm{~Hz}), 23.3(\mathrm{dd}, J=7.3,3.7 \mathrm{~Hz}), 21.2(\mathrm{~d}, J=5.8 \mathrm{~Hz}), 20.8(\mathrm{~d}, J=5.8 \mathrm{~Hz})$; HRMS (EI+) $m / z[M+]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{P} 445.1550$, found 446.1633.

1-Hydroxy-9-(4-nitrophenyl)-2,3,4,9-tetrahydrophosphinino[2,3-b]indole 1-sulfide (2)

To a round-bottomed flask was added the (R_{p}) or (S_{p})-14b (1 equiv, 0.9 mmol) in THF (3 mL) under argon. The reaction mixture was cooled to $0^{\circ} \mathrm{C}$ in an ice bath. NaH (3 equiv, $2.7 \mathrm{mmol}, 60 \%$ in mineral oil) was added in one portion and the mixture brought to rt and stirred for 1 h , then CS_{2} (10 equiv, 9 mmol) was added dropwise and the reaction stirred at rt overnight. The reaction mixture was cooled to rt and diluted with ethyl acetate (30 mL) and transferred to a separatory funnel. The organic layer was extracted with NaHCO_{3} (sat. aq, $3 \times$), and the layers separated. The basic layer was acidified with $3 \mathrm{M} \mathrm{HCl}(\mathrm{pH} 1)$ and extracted with ethyl acetate. The organic layer
was separated and dried with MgSO_{4}, filtered and concentrated under vacuum to afford the product 2 as a yellow solid ($0.3 \mathrm{~g}, 80 \%$). ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 58.1$ (s); ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 11.94$ (s, 1H), 8.45 - 8.36 (m, 2H), 7.91 - 7.83 (m, 2 H), $7.71(\mathrm{dt}, J=7.9,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{ddd}, J=7.9,6.6,1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.11-2.99(\mathrm{~m}, 1 \mathrm{H}), 2.99-2.86(\mathrm{~m}, 1 \mathrm{H}), 2.39(\mathrm{ddt}, J=17.3,9.8,3.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.33-2.08(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 146.4,144.6,138.6(\mathrm{~d}, \mathrm{~J}=$ $7.9 \mathrm{~Hz}), 130.4(\mathrm{~d}, J=109.2 \mathrm{~Hz}), 128.9,126.9(\mathrm{~d}, J=11.0 \mathrm{~Hz}), 126.2,125.1,124.9(\mathrm{~d}$, $J=11.8 \mathrm{~Hz}), 121.7,121.0,110.8,37.3(\mathrm{~d}, J=78.5 \mathrm{~Hz}), 23.1(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 20.9(\mathrm{~d}$, $J=7.0 \mathrm{~Hz}) ; \operatorname{HRMS}(\mathrm{El}+) \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{P}$ 358.0536, found 359.0618.

N-(1, 1^{\prime}-Biphenyl-4-yl)-1, 1 '-biphenyl-2-amine (16)

To a round-bottomed flask was added 1-aminobiphenyl (1 equiv, 36 mmol) and 4-bromobiphenyl (1 equiv, 36 mmol) in toluene (67 mL). The reaction mixture was flushed with argon for 10 min , then $\mathrm{Pd}(\mathrm{OAc})_{2}(1 \mathrm{~mol} \%, 0.37 \mathrm{mmol})$, dppf ($2 \mathrm{~mol} \%$, 0.66 mmol) and $\mathrm{NaOt} t$-Bu (1.1 equiv, 47 mmol) were added and the reaction mixture brought to reflux for 16 h . The mixture was then cooled to rt , and $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ was added then the mixture was transferred to a separatory funnel. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$, extracted with toluene, and the layers were separated. The organic layer was dried with MgSO_{4}, filtered, and concentrated in vacuum. The crude product was purified by column chromatography to yield the product $16(2.5 \mathrm{~g}, 85 \%) .{ }^{2}{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl ${ }_{3}$) $\delta 7.65-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.48(\mathrm{~m}, 5 \mathrm{H})$,
$7.47-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.34(\mathrm{td}, J=6.8,1.6 \mathrm{~Hz}, 3 \mathrm{H}), 7.19-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.09(\mathrm{dd}, J=$ 7.4, 1.2 Hz, 1H), 5.72 (s, 1H).

5-([1,1'-Biphenyl]-4-yl)-6-((1-phenylethyl)amino)-5H-dibenzo[c,e][1,2]azaphosphinine 6-oxide (17)

In a manner similar to [38] under neat conditions to a round-bottomed flask was added 16 (1 equiv, 7.8 mmol) and phosphorus trichloride (2.3 equiv, 18.13 mmol), and the mixture brought to $50^{\circ} \mathrm{C}$ in an oil bath and stirred for 3 h under argon. The reaction mixture was cooled to rt , and zinc chloride (0.43 equiv, 0.36 mmol) was added. The reaction mixture was brought to $150^{\circ} \mathrm{C}$ and stirred for 8 h under argon. After cooling to $0{ }^{\circ} \mathrm{C}$, the crude was solubilized in toluene (30 mL), and DIPEA (2.0 equiv, 15.6 mmol) and (S)-1-phenylethylamine (2.0 equiv, 15.6 mmol) were added and stirred at rt for 2 h under argon. To the reaction mixture $\mathrm{H}_{2} \mathrm{O}_{2}$ (35 wt $\%$ in $\mathrm{H}_{2} \mathrm{O}, 5.0$ equiv, 39 mmol) and THF (10 mL) were added at $0^{\circ} \mathrm{C}$ and then stirred for 4 h at rt . The organic layer was poured into 1 M HCl and diluted with EtOAc, then transferred to a separatory funnel. The organic layer was washed with NaHCO_{3} (sat. aq.) and brine. The layers were separated, and the organic layer dried over MgSO_{4}, filtered, and concentrated under a vacuum. The crude product was purified by column chromatography (hexanes/EtOAc 50:50) to afford the phosphonamide as a white solid 17 (1.9 g, 49\%). The solid was dissolved in hot EtOAc, hexane was added, and the flask was placed in the refrigerator $\left(-18{ }^{\circ} \mathrm{C}\right)$ overnight. The resulting solid precipitant were filtered and washed with hexanes to afford the resolved product ($0.375 \mathrm{~g}, 20 \%$). ${ }^{31} \mathrm{P}$ NMR (162 MHz, CDCl 3) $\delta 9.23(\mathrm{~s}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.19$ - 8.01 (m ,

2 H), 7.91 (ddd, $J=14.3,7.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.70$ (ddt, $J=8.3,7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.64-$ $7.58(\mathrm{~m}, 2 \mathrm{H}), 7.55(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{dd}, J=8.3,6.8 \mathrm{~Hz}, 3 \mathrm{H}), 7.41(\mathrm{~d}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.09(\mathrm{~m}, 5 \mathrm{H}), 7.06-6.97(\mathrm{~m}, 2 \mathrm{H}), 6.71(\mathrm{dt}, J=8.2$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.41-4.20(\mathrm{~m}, 1 \mathrm{H}), 3.08(\mathrm{t}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.15(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.

5-([1,1'-Biphenyl]-4-yl)-6-hydroxy-5H-dibenzo[c,e][[1,2]azaphosphinine 6-sulfide (4)

To a solution of $\left(S_{\mathrm{p}}\right)$ or $\left(R_{\mathrm{p}}\right)$-17 in dry THF $(8 \mathrm{~mL})$ was added at $0{ }^{\circ} \mathrm{C} \mathrm{NaH}$ (3.0 equiv, $1.5 \mathrm{mmol}, 60 \%$ dispersion in mineral oil) under argon. The reaction mixture was stirred for 1 h at rt , and then carbon disulfide (10.0 equiv, 7.7 mmol) was added dropwise and stirred for 4 h at rt. Ethyl acetate and hexanes were added and washed $(3 \times)$ with a saturated aqueous solution of NaHCO_{3}. The two layers were separated, and the aqueous layer was acidified with 3 M HCl until pH 1 and extracted with ethyl acetate. The organic layer was dried over MgSO_{4}, filtered, and concentrated under vacuum. The crude mixture was solubilized in DCM and the precipitate filtered out. The filtrate was concentrated under a vacuum to afford the product 4 as an orange oil ($0.58 \mathrm{~g}, 75 \%$). ${ }^{31} \mathrm{P}$ NMR (162 MHz, CDCl_{3}) б 61.8; ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) ~ \delta 9.34$ (s, 1H), 8.30 (ddd, $J=17.0,7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.13-8.05(\mathrm{~m}, 2 \mathrm{H}), 7.73(\mathrm{dd}, J=8.1$, $6.6 \mathrm{~Hz}, 3 \mathrm{H}), 7.70-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.58(\mathrm{td}, J=7.6,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.44(\mathrm{~m}, 4 \mathrm{H})$, $7.45-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.20(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $1 \mathrm{H})$.

References:

[1] Bryant, D.; Kilner, C.; Kee, T. Inorg. Chim. Acta. 2009, 362, 614.
[2] Riedmüller, S.; Kaufhold, O.; Spreitzer, H.; Nachtsheim, B. J. Eur. J. Org. Chem. 2014, 1391-1394.
[3] Ferry, F.; Stemper, J.; Marinetti, A.; Voituriez, A.; Guinchard, X. Eur. J. Org. Chem., 2014, 188-193. DOI: 10.1002/ејос. 201301253.

HPLC chromatograms.

Representative procedure for the asymmetric hydrogenation of 2-phenylquinoline (20)

To a reaction tube was added 2-phenylquinoline (1 equiv, 0.25 mmol), the Hantzsch ester 19 (2.4 equiv, 0.58 mmol) in toluene (5 mL) under argon. The reaction mixture was cooled to $0^{\circ} \mathrm{C}$, then the CPA catalyst 2-4 ($0.005 \mathrm{mmol}, 2 \mathrm{~mol} \%$) was added. The reaction mixture was brought to rt and stirred for 24 h . The reaction mixture was concentrated under vacuum, and the crude product was purified directly by column chromatography (hexanes/ethyl acetate $95: 5$) to yield known compound 20, as a colorless oil in quantitative yield. ${ }^{3}$ Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (hexane/iPrOH 95:5, $1.0 \mathrm{~mL} / \mathrm{min}$).

Racemic 2-phenyl-1,2,3,4-tetra-hydroquinoline (20) HPLC.

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

2-Phenyl-1,2,3,4-tetra-hydroquinoline from CPA 2 HPLC

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \text { s }} \end{gathered}$	Height [mAU]	Area \%
1	3.611	BB	0.1295	311.49915	38.06655	0.6414
2	8.427	BB	0.3080	2.78476 e 4	1463.50867	57.3414
3	9.483	BB	0.3455	1234.98560	45.95943	2.5430
4	11.017	BB	0.4118	1.05513 e 4	413.30026	21.7262
5	12.490	BB	0.4731	8619.25293	294.80676	17.7480
Total	s			4.85646 e 4	2255.64167	

2-Phenyl-1,2,3,4-tetrahydroquinoline from CPA 3 HPLC.

2-Phenyl-1,2,3,4-tetrahydroquinoline from CPA 4 HPLC.

Peak \#	RetTime [min]	Type	$\begin{gathered} \text { Width } \\ \text { [min] } \end{gathered}$	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \mathrm{~s}]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	Area $\%$
1	4.704		0.2404	29.89528	1.54059	0.2247
2	6.449	BB	0.0466	50.97886	17.19250	0.3832
3	6.640	BB	0.1065	12.50844	1.54424	0.0940
4	8.362		0.4317	627.11212	19.89706	4.7134
5	11.219	BV	0.5768	5721.33643	135.43665	43.0020
6	12.873	VB	0.6832	5966.75293	123.16451	44.8466
7	15.102	VV	0.0800	19.11582	3.37819	0.1437
8	15.264	VV	0.0691	43.87333	8.66000	0.3298
9	15.355	VV	0.0607	26.47861	5.65116	0.1990
10	15.422	VV	0.0582	67.97022	17.16884	0.5109
11	15.518	VV	0.0551	39.45806	9.77429	0.2966
12	15.613	VV	0.0622	50.56691	10.89502	0.3801
13	15.662	VV	0.0565	41.87500	10.97777	0.3147
14	15.733	VV	0.0802	61.59865	10.85541	0.4630
15	15.813	VV	0.0508	34.66135	10.41127	0.2605
16	15.888		0.5615	510.62433	10.80262	3.8379
Total	s :			1.33048 e 4	397.35012	

7

8

9

11

210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
											f1 (ppm)											
																					S38	

12

12
12

13a

13a

13b

 -i $\underbrace{N} \sim_{\sim}^{N}$

13b

14a

Racemic Mixture 14a

Abstract

14b

+
6.5 f1 (ppm)

14b

14b

2

[^0]2

\pm
$\stackrel{+}{+}$
\mid
\mid

4

[^0]: ｜

