

Supporting Information

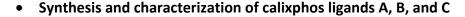
for

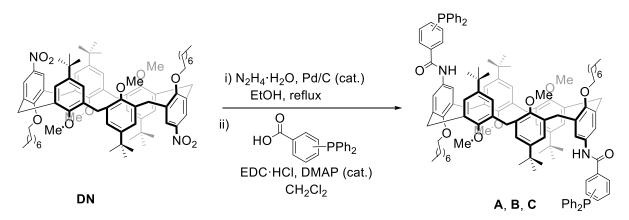
Diametric calix[6]arene-based phosphine gold(I) cavitands

Gabriele Giovanardi, Andrea Secchi, Arturo Arduini and Gianpiero Cera

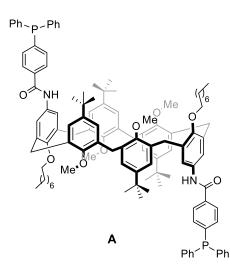
Beilstein J. Org. Chem. 2022, 18, 190–196. doi:10.3762/bjoc.18.21

Experimental procedures, characterization data of compounds and copies of NMR spectra

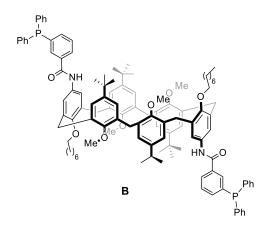

License and Terms: This is a supporting information file under the terms of the Creative Commons Attribution License (https://creativecommons.org/ licenses/by/4.0). Please note that the reuse, redistribution and reproduction in particular requires that the author(s) and source are credited and that individual graphics may be subject to special legal provisions.

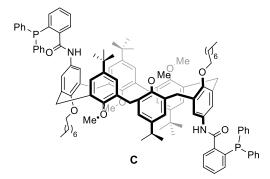

Table of contents

General remarks and materials	S1
Synthesis and characterization of calixphos ligands A, B, C	S2
Synthesis and characterization of monomeric phosphine ligands A', B', C'	S5
Synthesis and characterization of calixphos catalysts A, B, C(AuCl) ₂	S7
Synthesis and characterization of monomeric catalysts A', B', C'(AuCl)	S9
NMR spectra	S12
References	S40

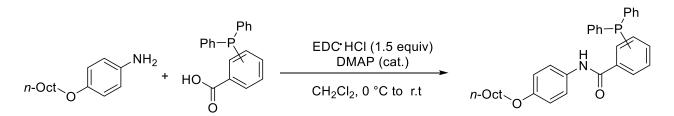

General remarks and materials

All chemicals those syntheses are not reported hereafter were purchased from commercial sources and used as received. Solvents were dried and stored over molecular sieves previously activated in an oven (450 °C over night). Anhydrous CH₂Cl₂ for catalytic reactions was supplied by Fluka in Sureseal® bottles and used without any further purification. Column chromatography was performed on silica gel 60 (70–230 mesh). Melting points were measured with an electrothermal apparatus and are uncorrected. NMR spectra were recorded on a Bruker 400 MHz using solvents as internal standards (7.26 ppm for ¹H NMR and 77.00 ppm for ¹³C NMR for CDCl₃). The terms m, s, d, t, q, and quint represent multiplet, singlet, doublet, triplet, quadruplet, and quintuplet respectively, and the term br means a broad signal. ¹³C APT NMR spectra are reported for compounds. Exact masses were recorded on a LTQ ORBITRAP XL Thermo Mass Spectrometer (ESI source). Materials: **DN** derivative [1], (diphenylphosphino)benzoic acids [2], and enyne **1a** [3] were synthesized according to known procedures.

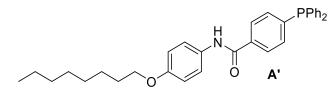



To a two-necked round-bottomed flask, under N₂ atmosphere, Pd/C (10 mol %) was added to a suspension of **DN** (234 mg, 0.27 mmol) in EtOH (100 mL). Subsequently, NH₂NH₂•H₂O (5 mmol, 20 equiv) was added dropwise, and after the addition was completed, the reaction mixture was refluxed at 80 °C for 24 h (oil bath). After completion of the reaction as determined by TLC analysis, the reaction mixture was cooled to room temperature, and then filtered through a Celite pad to remove the solids. The mixture was concentrated at reduced pressure and water (30 mL) was added. After extraction with CH₂Cl₂ (3 × 30 mL), organic phases were dried over Na₂SO₄ and concentrated at reduced pressure to afford a pale yellow solid. The crude was dissolved in dry CH₂Cl₂ (15 mL) under N₂ atmosphere and DMAP (10 mol %) and EDC•HCl (0.8 mmol, 3.0 equiv) were added. Subsequently, the mixture was cooled to 0 °C and the corresponding (diphenylphosphino)benzoic acid (0.7 mmol, 2.5 equiv) was added and the reaction mixture was stirred for 16 h. After completion, H₂O (20 mL) was added, and the mixture extracted with CH₂Cl₂ (3 × 30 mL). The organic layers were dried over Na₂SO₄, concentrated at reduced pressure, and the crude purified by column chromatography on silica gel (*n*-Hex/AcOEt 80:20).

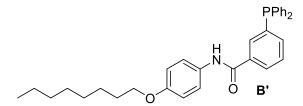
General procedure was followed using 4-(diphenylphosphino)benzoic acid. Purification by column chromatography on silica gel (*n*-Hex/EtOAc 80:20) yielded **A** (285 mg, 60%) as a white solid. **M. p.** = 130-133 °C. ¹**H NMR** *1,2,3-alternate conformer* (400 MHz, CDCl₃) δ = 7.79 – 7.64 (m, 4H), 7.45 – 7.23 (m, 28H), 7.23 (d, *J* = 2.5 Hz, 4H), 6.94 (br s, 4H), 6.89 (br s, 2H), 4.21 (d, *J* = 14.2 Hz, 4H), 3.93 (s, 4H), 3.88 (t, *J* = 6.6 Hz, 4H), 3.66 (d, *J* = 14.2 Hz, 4H), 2.94 (br s, 12H), 1.90 – 1.79 (m, 4H), 1.61 – 1.51 (m, 4H), 1.44 – 1.27 (m, 16H), 1.17 (s, 36H), 0.91 (s, 6H). ¹³**C NMR** *1,2,3-alternate conformer* (101 MHz, CDCl₃) δ = 165.0 (Cq), 154.0 (Cq), 151.6 (Cq), 146.3 (2 x Cq), 142.0 (d, *J*_{C-P} = 13.8 Hz, Cq), 136.5 (d, *J*_{C-P} = 10.8 Hz, Cq), 135.3 (Cq), 135.1 (Cq), 132.9 (Cq), 133.8 (d, *J*_{C-P} = 19.8 Hz, CH), 133.7 (d, *J*_{C-P} = 17.2 Hz, CH), 132.8 (Cq), 129.1 (CH), 128.7 (d, *J*_{C-P} = 7.3 Hz, CH), 127.1 (d, *J*_{C-P} = 6.6 Hz, CH), 126.6 (CH), 121.2 (CH), 73.3 (CH₂), 60.0 (CH₃), 34.1 (Cq), 31.9 (CH₂), 31.4 (CH₃), 30.8 (2 x CH₂), 30.5 (CH₂), 29.6 (CH₂), 29.3 (CH₂), 26.3 (CH₂), 22.7 (CH₂), 14.2 (CH₃). ³¹**P NMR** *1,2,3-alternated conformer* (162 MHz, CDCl₃) δ = -5.36. **ESI-MS**: *m/z* [M+Na]⁺ calcd. for C₁₁₆H₁₃₆N₂NaO₈P₂: 1769.97; found: 1769.52. **HR-MS** (ESI) *m/z*: [M+H]⁺ calcd. for C₁₁₆H₁₃₇N₂O₈P₂: 1747.9884; found 1747.9886.



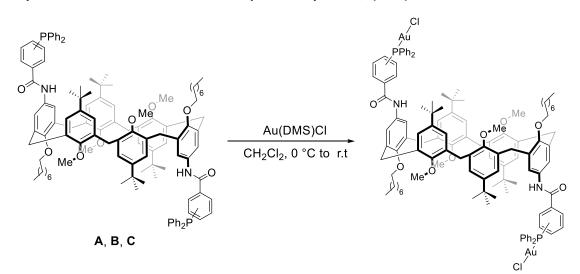
General procedure was followed using 3-(diphenylphosphino)benzoic acid. Purification by column chromatography on silica gel (*n*-Hex/EtOAc 80:20) yielded **B** (261 mg, 55%) as a white solid. **M. p.** = 171-173 °C. ¹**H NMR** *1,2,3-alternated conformer* (400 MHz, CDCl₃) δ = 7.80 – 7.73 (m, 2H), 7.72 – 7.75 (m, 6H), 7.54 – 7.41 (m, 6H), 7.40 – 7.19 (m, 20H), 6.98 (br s, 4H), 6.86 (br s, 4H), 4.23 (d, *J* = 14.2 Hz, 4H), 3.92 (bs, 4H), 3.88 (t, *J* = 7.9 Hz, 4H), 3.62 (d, *J* = 14.2 Hz, 4H), 2.86 (br s, 12H), 1.97 – 1.83 (m, 4H), 1.65 – 1.53 (m, 4H), 1.45 – 1.29 (m, 16H), 1.15 (s, 36H), 0.94 – 0.82 (m, 6H). ¹³C NMR *1,2,3-alternated conformer* (101 MHz, CDCl₃) δ = 164.8 (C_q), 156.3 (C_q), 151.7 (C_q), 146.2 (C_q), 138.4 (d, *J*_{C-P} = 12.1 Hz, C_q), 136.4 (d, *J*_{C-P} = 15.8 Hz, CH), 136.3 (d, *J*_{C-P} = 9.6 Hz, C_q), 135.5 (C_q), 135.3 (d, *J*_{C-P} = 7.2 Hz, C_q), 133.8 (C_q), 133.7 (d, *J*_{C-P} = 19.2 Hz, CH), 133.0 (C_q), 132.1 (d, *J*_{C-P} = 9.4 Hz, CH), 129.1 (CH), 128.8 (d, *J*_{C-P} = 7.0 Hz, CH), 128.7 (d, *J*_{C-P} = 7.0 Hz, CH), 127.4 (CH), 126.8 (CH), 126.4 (CH), 120.7 (CH), 73.2 (CH₂), 59.9 (CH₃), 34.1 (C_q), 31.9 (CH₂), 31.3 (CH₃), 30.7 (CH₂), 30.6 (2 × CH₂), 29.6 (CH₂), 29.3 (CH₂), 26.4 (CH₂), 22.7 (CH₂), 14.1 (CH₃). ³¹P NMR 1,2,3-alternate conformer (162 MHz, CDCl₃) δ = -3.22. **ESI-MS**: m/z [M+Na]⁺ calcd. for C₁₁₆H₁₃₆N₂NaO₈P₂: 1769.97; found: 1769.13. **HR-MS** (ESI) m/z: [M+H]⁺ calcd. for C₁₁₆H₁₃₇N₂O₈P₂: 1747.9884; found 1747.9894.

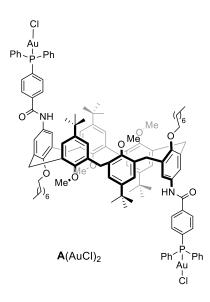


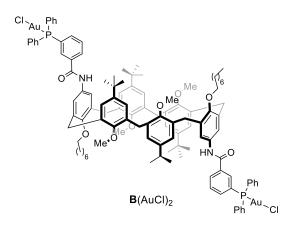
General procedure was followed using 2-(diphenylphosphino)benzoic acid. Purification by column chromatography on silica gel (*n*-Hex/EtOAc 80:20) yielded **C** (250 mg, 53%) as a white solid. **M. p.** = 175-172 °C. ¹**H NMR** *1,2,3-alternate conformer* (400 MHz, CDCl₃) δ = 7.63–7.58 (m, 2H), 7.47 – 7.42 (m, 2H), 7.39 – 7.16 (m, 26H), 7.09 – 7.25 (m, 6H), 6.91 – 6.87 (m, 6H), 4.27 (d, *J* = 14.3 Hz, 4H), 3.90 (s, 4H), 3.88 (t, *J* = 7.9 Hz, 4H), 3.57 (d, *J* = 14.3 Hz, 4H), 2.85 (br s, 12H), 1.95 – 1.84 (m, 4H), 1.64 – 1.52 (m, 4H), 1.47 – 1.28 (m, 16H), 1.18 (s, 36H), 0.94 – 0.88 (m, 6H). ¹³**C NMR** *1,2,3-alternate conformer* (101 MHz, CDCl₃) δ = 166.5 (C_q), 154.2 (C_q), 151.8 (C_q), 146.0 (C_q), 142.0 (d, *J*_{C-P} = 25.0 Hz, C_q), 136.9 (d, *J*_{C-P} = 6.4 Hz, C_q), 135.1 (C_q), 135.0 (d, *J*_{C-P} = 15.0 Hz, C_q), 134.2 (CH), 133.9 (d, *J*_{C-P} = 18.8 Hz, CH), 133.7 (C_q), 133.2 (C_q), 132.7 (C_q), 130.2 (CH), 128.8 (CH), 128.5 (d, *J*_{C-P} = 7.8 Hz, CH), 128.0 (d, *J*_{C-P} = 5.3 Hz, CH), 126.9 (CH), 126.3 (CH), 120.7 (CH), 73.5 (CH₂), 59.9 (CH₃), 34.1 (C_q), 31.9 (CH₂), 31.4 (CH₃), 30.9 (CH₂), 30.6 (2 x CH₂), 29.6 (CH₂), 29.3 (CH₂), 26.3 (CH₂), 22.7 (CH₂), 14.1 (CH₃). ³¹**P NMR** *1,2,3-alternate conformer* (162 MHz, CDCl₃) δ = -8.67. **ESI-MS**: *m/z* [M+Na]⁺ calcd. for C₁₁₆H₁₃₆N₂NaO₈P₂: 1769.97; found: 1769.32. **HR-MS** (ESI) *m/z*: [M+H]⁺ calcd. for C₁₁₆H₁₃₇N₂O₈P₂: 1747.9884; found 1747.9896.

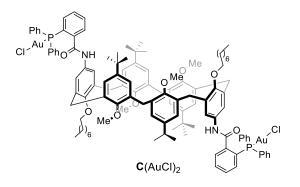

Synthesis and characterization of monomeric phosphine ligands

4-(Octyloxy)aniline (0.7 mmol, 1.0 equiv) was dissolved in dry CH_2Cl_2 (15 mL) under N_2 atmosphere and DMAP (10 mol %) and EDC•HCl (0.8 mmol, 1.1 equiv) were added. Subsequently, the mixture was cooled to 0 °C and the desired (diphenylphosphino)benzoic acid (0.8 mmol, 1.1 equiv) was added. The reaction mixture was stirred for 16 h. After completion, H_2O (20 mL) was added, and the mixture extracted with CH_2Cl_2 (3 × 30 mL). The organic layers were dried over Na_2SO_4 , concentrated at reduced pressure, and the crude purified by column chromatography on silica gel (*n*-Hex/AcOEt 80:20).

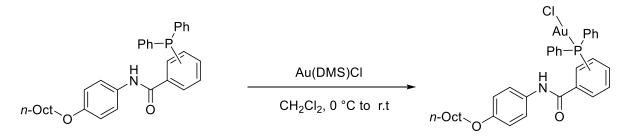

General procedure was followed using 4-(diphenylphosphino)benzoic acid. Purification by column chromatography on silica gel (*n*-Hex/EtOAc 80:20) yielded **A'** (255 mg, 71%) as a white solid. **M. p.** = 138-140 °C. ¹**H NMR** (400 MHz, CDCl₃) δ = 7.85 (s, 1H), 7.84 – 7.78 (d, *J* = 8.2 Hz, 2H), 7.56 – 7.50 (d, *J* = 8.2 Hz, 2H), 7.41 – 7.32 (m, 12H), 6.91 (d, *J* = 9.0 Hz, 2H), 3.97 (t, *J* = 6.6 Hz, 2H), 1.85 – 1.73 (m, 2H), 1.54 – 1.43 (m, 2H), 1.38 – 1.27 (m, 8H), 0.96 – 0.83 (m, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ = 165.3 (C_q), 156.3 (C_q), 142.1 (d, *J*_{C-P} = 12.9 Hz, C_q), 136.0 (d, *J*_{C-P} = 9.3 Hz, C_q), 135.1 (C_q), 133.9 (d, *J*_{C-P} = 19.6 Hz, CH), 133.7 (d, *J*_{C-P} = 19.0 Hz, CH), 130.7 (C_q), 129.2 (CH), 128.7 (d, *J*_{C-P} = 7.3 Hz, CH), 126.9 (d, *J*_{C-P} = 6.6 Hz, CH), 122.1 (CH), 114.9 (CH), 68.3 (CH₂), 31.9 (CH₂), 29.4 (CH₂), 29.3 (CH₂), 29.3 (CH₂), 26.1 (CH₂), 22.7 (CH₂), 14.1 (CH₃). ³¹P NMR (162 MHz, CDCl₃) δ = -3.18. **ESI-MS**: *m/z* [M+Na]⁺ calcd. for C₃₃H₃₆NNaO₂P: 532.24; found: 532.27. **HR-MS** (ESI) *m/z*: [M+H]⁺ calcd. for C₃₃H₃₇NO₂P: 510.2562; found 510.2556.


General procedure was followed using 3-(diphenylphosphino)benzoic acid. Purification by column chromatography on silica gel (*n*-Hex/EtOAc 80:20) yielded **B'** (271 mg, 76%) as a white solid. **M. p.** = 137-138 °C. ¹**H NMR** (400 MHz, CDCl₃) δ = 7.92 – 7.82 (m, 2H), 7.78 (s, 1H), 7.49 (d, *J* = 8.6 Hz, 2H), 7.45 (dd, *J* = 6.1, 2.6 Hz, 2H), 7.40 – 7.32 (m, 10H), 6.99 – 6.78 (m, 2H), 3.96 (t, *J* = 6.6 Hz, 2H), 1.85 – 1.73 (m, 2H), 1.47 (q, *J* = 7.0 Hz, 2H), 1.39 – 1.26 (m, 8H), 0.96 – 0.85 (m, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ = 165.2 (C_q), 156.2 (C_q), 138.4 (d, *J*_{C-P} = 12.1 Hz, C_q), 136.6 (d *J*_{C-P} = 15.8 Hz, CH), 136.1 (d, *J*_{C-P} = 9.6 Hz, C_q), 135.3 (d, *J*_{C-P} = 7.2 Hz, C_q), 133.8 (d, *J*_{C-P} = 7.0 Hz, CH), 131.9 (d, *J*_{C-P} = 23.6 Hz, CH), 130.7 (C_q), 129.2 (CH), 129.0 (d *J*_{C-P} = 5.6 Hz, CH), 128.7 (d, *J*_{C-P} = 7.0 Hz, CH), 127.8 (CH), 122.0 (CH), 114.9 (CH), 68.3 (CH₂), 31.8 (CH₂), 29.4 (CH₂), 29.3 (CH₂), 26.1 (CH₂), 22.7 (CH₂), 14.1 (CH₃). ³¹P NMR (162 MHz, CDCl₃) δ = 2.99. **ESI-MS**: *m*/*z* [M+Na]⁺ calcd. for C₃₃H₃₆NNaO₂P: 532.24; found: 532.26. **HR-MS** (ESI) *m*/*z*: [M+H]⁺ calcd. for C₃₃H₃₇NO₂P: 510.2562; found 510.2568.

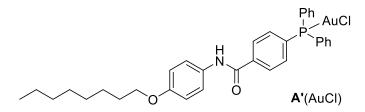

General procedure was followed using 2-(diphenylphosphino)benzoic acid. Purification by column chromatography on silica gel (*n*-Hex/EtOAc 80:20) yielded **C'** (247 mg, 69%) as a white solid. **M. p.** = 117-118 °C. ¹**H NMR** (400 MHz, CDCl₃) δ = 7.82 (dd, *J* = 8.0, 3.8 Hz, 1H), 7.75 (s, 1H), 7.46 (td, *J* = 7.5, 1.3 Hz, 1H), 7.42 – 7.31 (m, 11H), 7.24 – 7.19 (m, 2H), 7.05 (ddd, *J* = 7.7, 4.5, 1.3 Hz, 1H), 6.87 – 6.74 (m, 2H), 3.94 (t, *J* = 6.6 Hz, 2H), 1.88 – 1.70 (m, 2H), 1.52 – 1.41 (m, 2H), 1.40 – 1.25 (m, 8H), 0.97 – 0.82 (m, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ = 166.8 (C_q), 156.1 (C_q), 141.6 (d, *J*_{C-P} = 24.7 Hz, C_q), 135.9 (d, *J*_{C-P} = 6.4 Hz, C_q), 135.1 (d, *J*_{C-P} = 15.4 Hz, C_q), 134.1 (d, *J*_{C-P} = 5.3 Hz, CH), 134.0 (d, *J*_{C-P} = 20.0 Hz, CH), 130.5 (C_q), 130.4 (CH), 129.3 (2x CH), 128.8 (d, *J*_{C-P} = 7.3 Hz, CH), 128.6 (d, *J*_{C-P} = 5.1 Hz, CH), 121.7 (CH), 114.6 (CH), 68.3 (CH₂), 31.8 (CH₂), 29.4 (CH₂), 29.3 (CH₂), 29.3 (CH₂), 26.1 (CH₂), 22.7 (CH₂), 14.1 (CH₃). ³¹P NMR (162 MHz, CDCl₃) δ = -7.70. **ESI-MS**: *m*/*z* [M+Na]⁺ calcd. for C₃₃H₃₆NNaO₂P: 532.24; found: 532.22. **HR-MS** (ESI) *m*/*z*: [M+H]⁺ calcd. for C₃₃H₃₇NO₂P: 510.2562; found 510.2572. Synthesis and characterization of calixphos catalysts A,B,C(AuCl)2


In a two-necked Schlenk flask, under N₂ atmosphere, Au(DMS)Cl (26.5 mg, 0.09 mmol, 2.0 equiv) was added to a solution of the corresponding phosphine (80 mg, 0.045 mmol, 1.0 equiv) in CH₂Cl₂ (4.0 mL) at 0 °C. The reaction mixture was stirred at the same temperature for 30 min and then allowed to reach room temperature. After 1 h, the mixture was filtered through celite, washed with CH₂Cl₂ (20 mL), and the volatiles were removed under vacuum. The crude was purified by column chromatography on silica gel (*n*-Hex/AcOEt 80:20 \rightarrow 70:30).

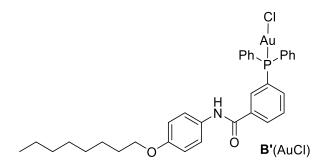
General procedure was followed using phosphine A. Purification by column chromatography on silica gel (*n*-Hex/EtOAc 80:20→70:30) yielded A(AuCl)₂ (92.1 mg, 93%) as а white solid. **M. p.** = 187-188 °C. ¹**H NMR** 1,2,3-alternate conformer (400 MHz, CDCl₃) δ = 7.83 – 7.76 (m, 4H), 7.71 – 7.62 (m, 4H), 7.61 – 7.47 (m, 22H), 7.18 (br s, 4H), 6.94 (br s, 4H), 6.86 (br s, 4H), 4.18 (d, J = 14.2 Hz, 4H), 3.91 (s, 4H), 3.88 (t, J = 6.7 Hz, 4H), 3.65 (d, J = 14.2Hz, 4H), 2.96 (br s, 12H), 1.90 - 1.79 (m, 4H), 1.58 - 1.47 (m, 4H), 1.37 - 1.23 (m, 16H), 1.15 (s, 36H), 0.93 - 0.80 (m, 6H). ¹³C NMR 1,2,3-alternate conformer (101 MHz, CDCl₃) δ = 163.9 (C_q), 154.0 (C_q), 151.8 (C_q), 146.3 (2 x C_q), 138.4 (d, *J*_{C-P} = 2.5 Hz, C_q), 135.3 (C_q), 134.4 (d, *J*_{C-P} = 13.8 Hz, CH), 134.2 (d, *J*_{C-P} = 13.8 Hz, CH); 134.0 (C_q), 133.4 (C_q), 132.6 (C_q), 132.3 (d, *J*_{C-P} = 2.2 Hz, CH), 129.4 (d, *J*_{C-P} = 12.2 Hz, CH), 128.1 (d, *J*_{C-P} = 61.9 Hz, C_q), 127.8 (d, *J*_{C-P} = 9.8 Hz, CH), 126.7 (CH), 126.6 (CH), 121.3 (CH), 73.4 (CH₂), 60.1 (CH₃), 34.1 (C_q), 31.9 (CH₂), 31.4 (CH₃), 30.8 (CH₂), 30.4 (2 x CH₂), 29.5 (CH₂), 29.4 (CH₂), 26.3 (CH₂), 22.7 (CH₂), 14.2 (CH₃). ³¹P NMR *1,2,3-alternate conformer* (162 MHz, CDCl₃) δ = 32.9. HR-MS: *m/z* [M-(AuCl₂)]⁺ calcd. for C₁₁₆H₁₃₆AuN₂O₈P₂: 1944.9471; found: 1994.9465.

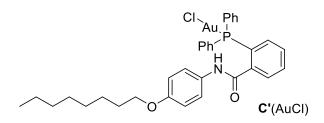


General procedure was followed using phosphine **B**. Purification by column chromatography on silica gel (n-Hex/EtOAc 80:20→70:30) yielded B(AuCl)₂ (73.5 mg, 74%) as а white solid. **M. p.** = 193-195 °C. ¹**H NMR** *1,2,3-alternate conformer* (400 MHz, CDCl₃) δ = 7.90 – 7.80 (m, 4H), 7.77 – 7.64 (m, 4H), 7.61 – 7.39 (m, 21H), 7.17 (br s, 4H), 6.93 (br s, 3H), 6.84 (br s, 6H), 4.18 (d, J = 14.2 Hz, 4H), 3.97 – 3.86 (m, 8H), 3.67 (d, J = 14.2 Hz, 4H), 2.96 (br s, 12H), 2.00 – 1.86 (m, 4H), 1.67 – 1.53 (m, 4H), 1.42 – 1.27 (m, 16H), 1.13 (s, 36H), 0.95 – 0.86 (m, 6H). ¹³**C NMR** 1,2,3-alternate conformer (101 MHz, CDCl₃) δ = 163.6 (C_q), 154.0 (C_q), 151.8 (C_q), 146.2 (C_q), 137.3 (d, J_{C-P} = 13.8 Hz, CH), 136.1 (d, J_{C-P} = 10.2 Hz, C_q), 135.3 (C_q), 134.2 (d, J_{C-P} = 13.8 Hz, CH), 133.9 (C_q), 132.8 (d, J_{C-P} = 12.8 Hz, CH), 132.6 (C_q), 132.3 (d, J_{C-P} = 2.5 Hz, CH), 130.5 (C_q), 129.9 (C_q), 129.8 (CH), 129.6 (d, J_{C-P} = 12.2 Hz, CH), 129.4 (d, J_{C-P} = 12.2 Hz, CH), 128.1 (d, J_{C-P} = 62.5 Hz, C_q), 126.7 (CH), 126.3 (CH), 121.3 (CH), 73.3 (CH₂), 60.1 (CH₃), 34.1 (C_q), 31.9 (CH₂), 31.4 (CH₃), 30.8 (CH₂), 30.6 (2 x CH₂), 29.6 (CH₂), 29.3 (CH₂), 26.3 (CH₂), 22.7 (CH₂), 14.1 (CH₃). ³¹P NMR 1,2,3-alternate conformer (162 MHz, CDCl₃) δ = 33.3. **HR-MS**: m/z [M-Cl]⁺ calcd. for C₁₁₆H₁₃₆Au₂ClN₂O₈P₂: 2176.8825; found: 2176.8828.

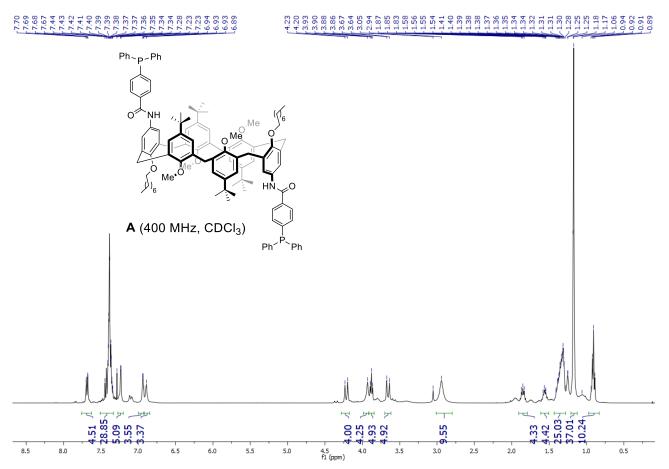


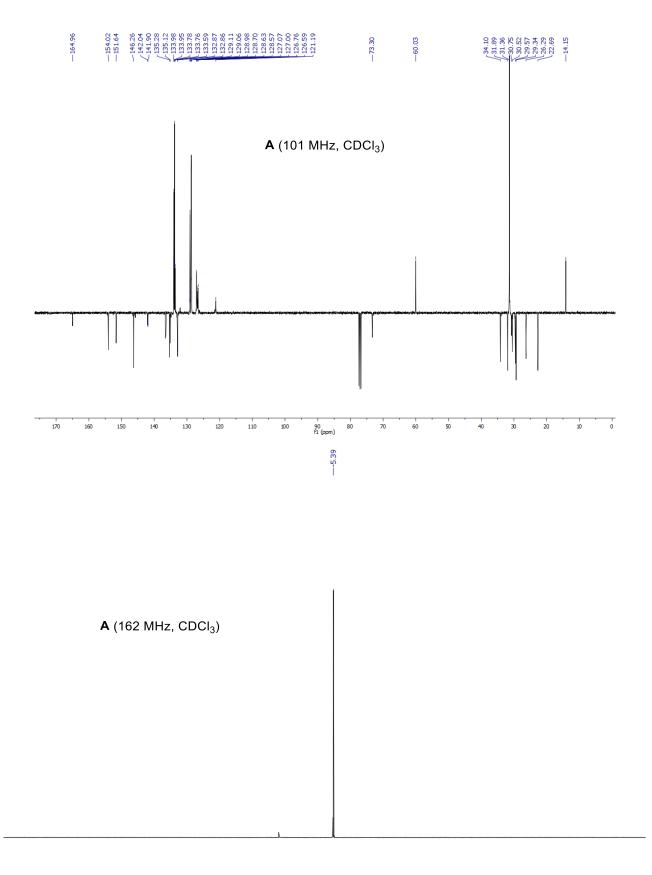
General procedure was followed using phosphine C. Purification by column chromatography on silica gel (n-Hex/EtOAc 80:20→70:30) yielded C(AuCl)₂ (68.7 69%) white solid. mg, as а **M. p.** = 196-197 °C. ¹**H** NMR 1,2,3-alternate conformer (400 MHz, CDCl₃) δ = 7.62 – 7.58 (m, 4H), 7.58 – 7.50 (m, 9H), 7.48 - 7.41 (m, 6H), 7.40 - 7.34 (m, 9H), 7.33 - 7.30 (m, 4H), 7.25 - 7.27 (m, 2H), 7.15 (br s, 2H), 6.93 - 6.85 (m, 6H), 4.30 (d, J = 14.2 Hz, 4H), 3.92 - 3.84 (m, 8H), 3.58 (d, J = 14.2 Hz, 4H), 2.91 (br s, 12H), 1.97 – 1.84 (m, 4H), 1.64 – 1.52 (m, 4H), 1.44 – 1.28 (m, 16H), 1.21 (s, 36H), 0.95 – 0.87 (m, 6H). ¹³C NMR 1,2,3-alternate conformer (101 MHz, CDCl₃) δ = 165.2 (C_q), 154.2 (C_q), 152.3 (C_q), 145.8 (C_q), 142.0 (d, J_{C-P} = 10.8 Hz, C_q), 135.3 (d, J_{C-P} = 9.2 Hz, CH), 135.1 (C_q), 134.2 (d, J_{C-P} = 13.9 Hz, CH), 133.6 (d, J_{C-P} = 5.1 Hz, C_q), 132.0 (C_q), 131.7 (CH), 131.6 (d, J_{C-P} = 2.6 Hz, CH), 130.3 (d, J_{C-P} = 10.4 Hz, CH), 129.7 (C_q), 129.0 (d, J_{C-P} = 13.0 Hz, CH), 128.4 (d, J_{C-P} = 8.9 Hz, C_q), 128.0 (d, J_{C-P} = 58.3 Hz, C_q), 127.1 (CH), 126.2 (CH), 122.5 (CH), 121.2 (CH), 73.7 (CH₂), 59.9 (CH₃), 34.1 (C_q), 31.9 (CH₂), 31.5 (CH₃), 30.9 (CH₂), 30.6 (2 x CH₂), 29.6 (CH₂), 29.3 (CH₂), 26.3 (CH₂), 22.7 (CH₂), 14.1 (CH₃). ³¹P NMR 1,2,3-alternate conformer (162 MHz, CDCl₃) δ = 34.6. HR-**MS**: *m*/*z* [M-Cl]⁺ calcd. for C₁₁₆H₁₃₆Au₂ClN₂O₈P₂: 2176.8825; found: 2176.8819.


• Synthesis and Characterization of monomeric Au(I) catalysts A', B', C'(AuCI)

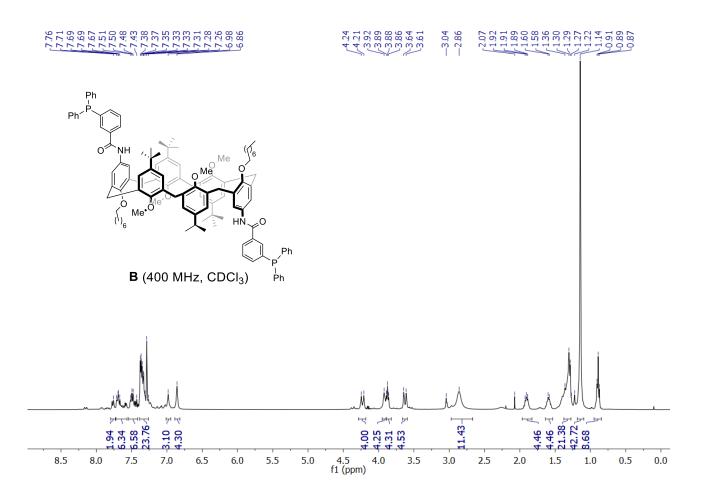

In a two-necked Schlenk flask, under N₂ atmosphere, Au(DMS)Cl (29.4 mg, 0.1 mmol, 1.0 equiv) was added to a solution of the corresponding phosphine (50.9 mg, 0.1 mmol, 1.0 equiv) in CH₂Cl₂ (4.0 mL) at 0 °C. The reaction mixture was stirred at the same temperature for 30 min and then allowed to reach room temperature. After 1 h, the mixture was filtered through celite, washed with CH₂Cl₂ (20 mL), and the volatiles were removed under vacuum. The crude was purified by column chromatography on silica gel (*n*-Hex/AcOEt: 80:20 \rightarrow 70:30).

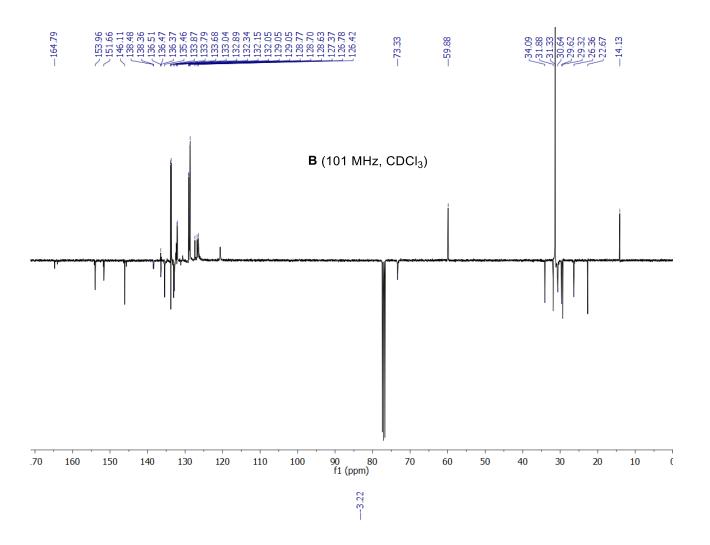
General procedure was followed using **A'**. Purification by column chromatography on silica gel (*n*-Hex/EtOAc 80:20 \rightarrow 70:30) yielded **A'**(AuCl) (69.8 mg, 94%) as a white solid. **M. p.** = 93-94 °C. ¹**H NMR** (400 MHz, CDCl₃) δ = 8.08 (s, 1H), 7.95 (dd, *J* = 8.3, 2.2 Hz, 2H), 7.66 – 7.44 (m, 14H), 6.97 – 6.84 (m, 2H), 3.96 (t, *J* = 6.6 Hz, 2H), 1.89 – 1.71 (m, 2H), 1.46 (q, *J* = 7.1 Hz, 2H), 1.42 – 1.24 (m, 8H), 1.00 – 0.84 (m, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ = 164.4 (Cq), 156.5 (Cq), 138.3 (Cq), 134.3 (d, *J*_{C-P} = 13.7 Hz, CH), 134.2 (d, *J*_{C-P} = 14.0 Hz, CH), 133.0 (Cq), 132.3 (d, *J*_{C-P} = 2.6 Hz, CH), 130.4 (Cq), 129.5 (d, *J*_{C-P} = 11.6 Hz, CH), 127.9 (d, *J*_{C-P} = 61.9 Hz, Cq), 127.7 (d, *J*_{C-P} = 12.2 Hz, CH), 122.2 (CH), 114.9 (CH), 68.4 (CH₂), 31.8 (CH₂), 29.4 (CH₂), 29.3 (CH₂), 29.3 (CH₂), 29.3 (CH₂), 29.7 (CH₂), 14.1 (CH₃). ³¹**P NMR** (162 MHz, CDCl₃) δ = 34.3. **ESI-MS**: *m/z* [M-Cl]⁺ calcd. for C₃₃H₃₆ AuNO₂P: 706.21; found: 706.18.

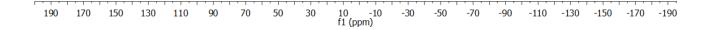

General procedure was followed using **B'**. Purification by column chromatography on silica gel (*n*-Hex/EtOAc 80:20 \rightarrow 70:30) yielded **B'**(AuCl) (68.5 mg, 92%) as a white solid. **M. p.** = 91-92 °C. ¹**H NMR** (400 MHz, CDCl₃) δ = 8.06 – 7.96 (m, 3H), 7.72 – 7.38 (m, 14H), 6.96 – 6.79 (m, 2H), 3.95 (t, *J* = 6.6 Hz, 2H), 1.89 – 1.72 (m, 2H), 1.46 (q, *J* = 7.3 Hz, 2H), 1.41 – 1.22 (m, 8H), 0.99 – 0.82 (m, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ = 164.3 (C_q), 156.5 (C_q), 136.7 (d, *J*_{C-P} = 13.7 Hz, CH), 136.3 (d, *J*_{C-P} = 10.9 Hz, C_q), 134.3 (d, *J*_{C-P} = 13.9 Hz, CH), 132.4 (d, *J*_{C-P} = 2.6 Hz, CH), 132.2 (d, *J*_{C-P} = 14.0 Hz, CH), 130.7 (CH), 130.3 (C_q), 129.9 (C_q), 129.7 (d, *J*_{C-P} = 11.8 Hz, CH), 129.5 (d, *J*_{C-P} = 12.0 Hz, CH), 128.0 (d, *J*_{C-P} = 62.0 Hz, C_q), 122.3 (CH), 114.9 (CH), 68.3 (CH₂), 31.8 (CH₂), 29.4 (CH₂), 29.3 (CH₂), 29.3 (CH₂), 26.1 (CH₂), 22.7 (CH₂), 14.1 (CH₃). ³¹P NMR (162 MHz, CDCl₃) δ = 43.2. **ESI-MS**: *m/z* [M-Cl]⁺ calcd. for C₃₃H₃₆ AuNO₂P: 706.21; found: 706.17.

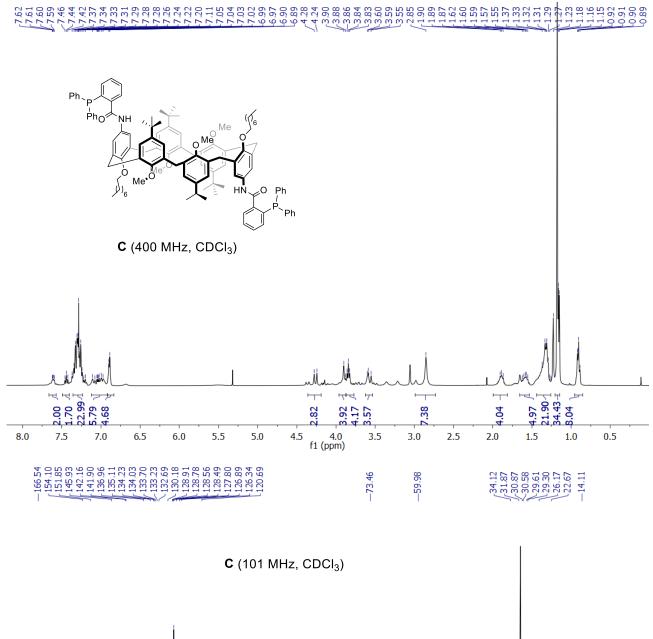


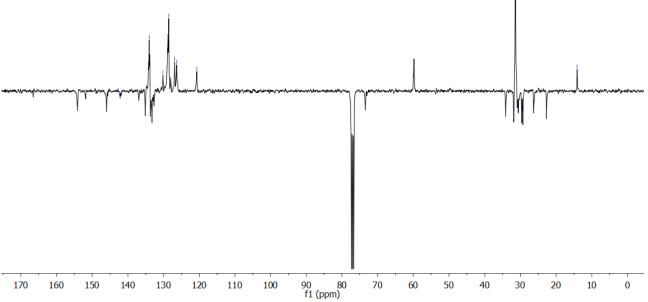
General procedure was followed using C'. Purification by column chromatography on silica gel (n-Hex/EtOAc 80:20→70:30) yielded C'(AuCl) (71.0 mg, 96%) as a white solid. M. p. = 97-98 °C. ¹H NMR (400 MHz, CDCl₃) δ = 7.89 (s, 1H), 7.86 (dd, J = 7.7, 4.2 Hz, 1H), 7.65 (t, J = 7.6 Hz, 1H), 7.59 - 7.40 (m, 12H), 7.34 (d, J = 8.5 Hz, 2H), 7.08 (dd, J = 12.5, 7.8 Hz, 1H), 6.75 (d, J = 8.9 Hz, 2H), 3.88 (t, J = 6.6 Hz, 2H), 1.74 (q, J = 6.9 Hz, 2H), 1.48 – 1.40 (m, 2H), 1.39 – 1.24 (m, 8H), 1.02 – 0.84 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ = 165.6 (C_q), 156.7 (C_q), 141.1 (d, J_{C-P} = 11.6 Hz, C_q), 134.7 (d, J_{C-P} = 8.0 Hz, CH), 134.3 (d, J_{C-P} = 14.2 Hz, CH), 131.9 (CH), 131.7 (d, *J*_{C-P} = 2.5 Hz, CH), 130.6 (d, *J*_{C-P} = 9.4 Hz, CH), 129.7 (C_q), 129.4 (C_q), 129.1 (d, *J*_{C-P} = 12.2 Hz, CH), 128.9 (d, J_{C-P} = 8.1 Hz, CH), 128.3 (d, J_{C-P} = 57.9 Hz, C_q) 123.5 (CH), 114.6 (CH), 68.2 (CH₂), 31.8 (CH₂), 29.4 (CH₂), 29.3 (CH₂), 29.3 (CH₂), 26.1 (CH₂), 22.7 (CH₂), 14.1 (CH₃). ³¹P NMR (162 MHz, CDCl₃) δ = 34.5. ESI-MS: m/z [M-CI]⁺ calcd. for $C_{33}H_{36}$ AuNO₂P: 706.21; found: 706.23.


• NMR Spectra


Several NMR spectra are presented for each novel compound in the following order: ¹H, ¹³C-APT; ³¹P and, if present, edited HSQC and g-COSY

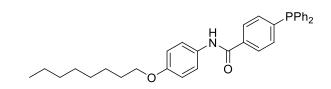



190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 f1 (ppm)

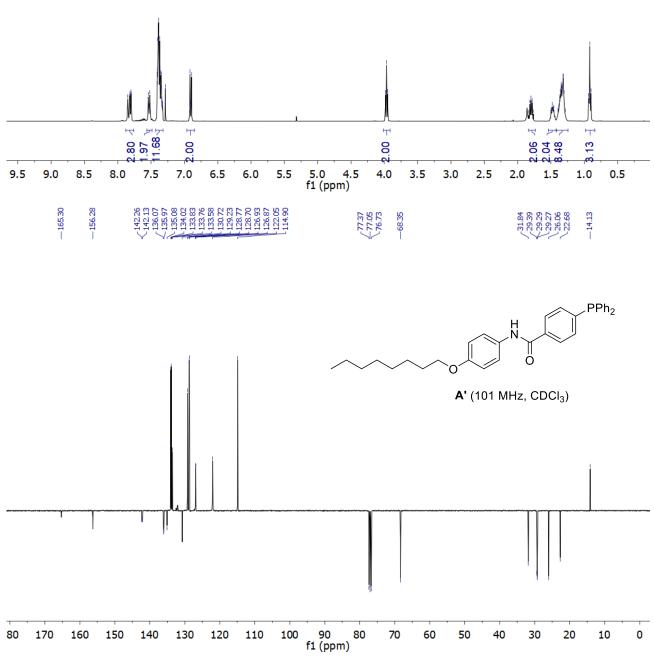


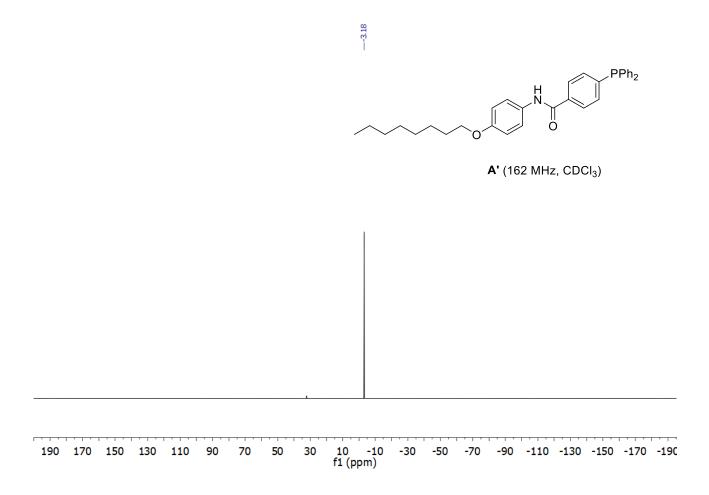
B (162 MHz, CDCl₃)

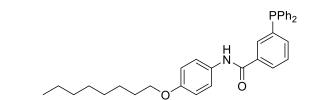
S16

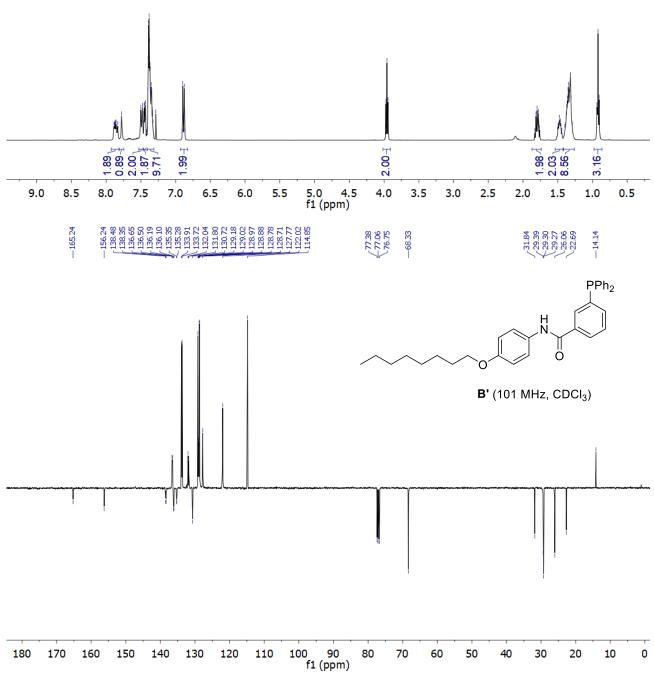

C (162 MHz, CDCl₃)

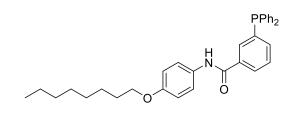
190	170	150	130	110	90	70	50	30	10	-10	-30	-50	-70	-90	-110	-130	-150	-170	-190
f1 (ppm)																			


---8.67

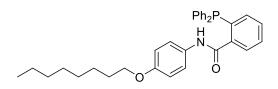


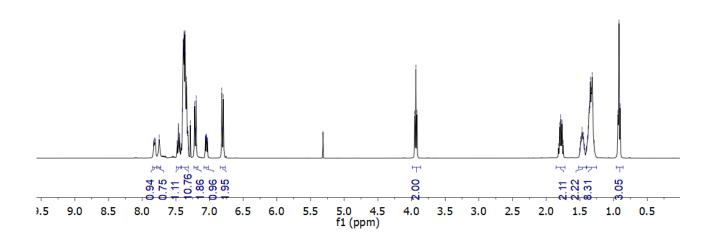


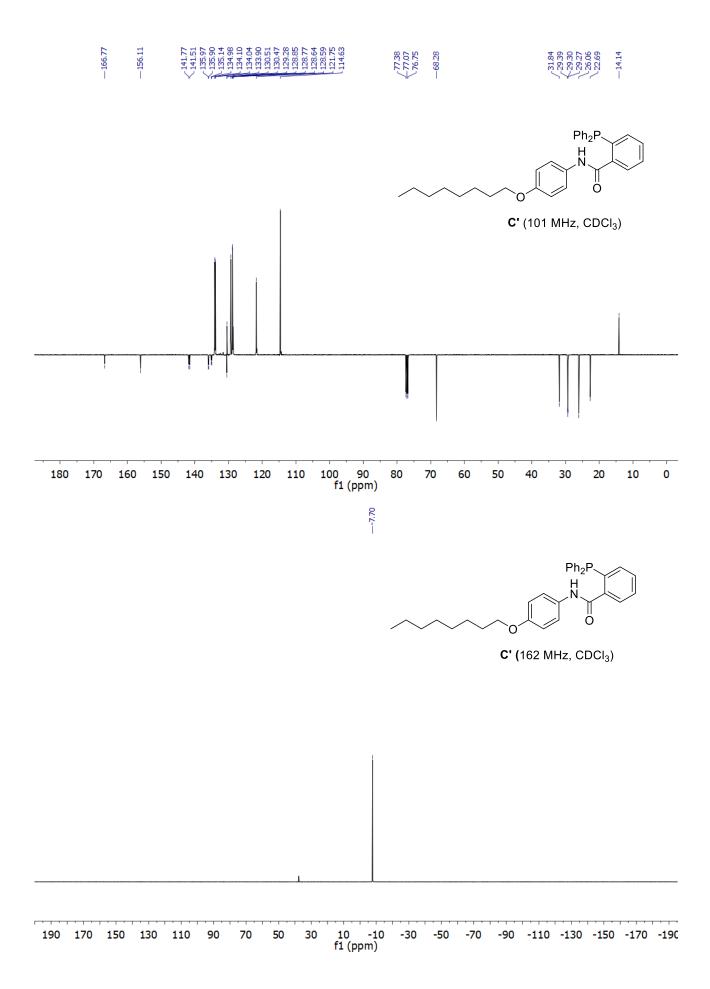

A' (400 MHz, CDCl₃)

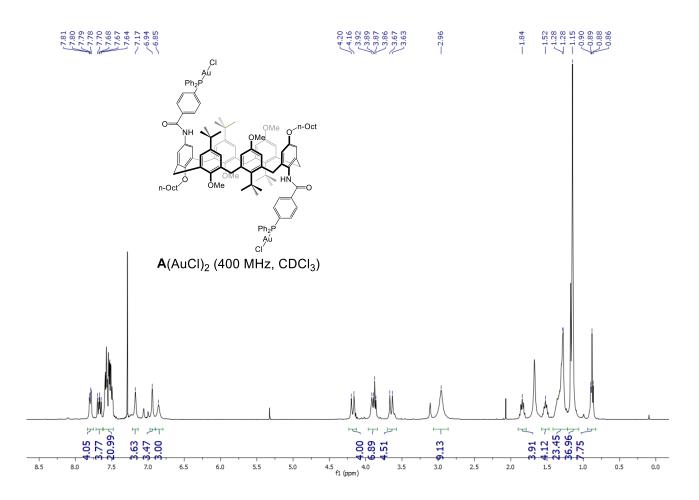


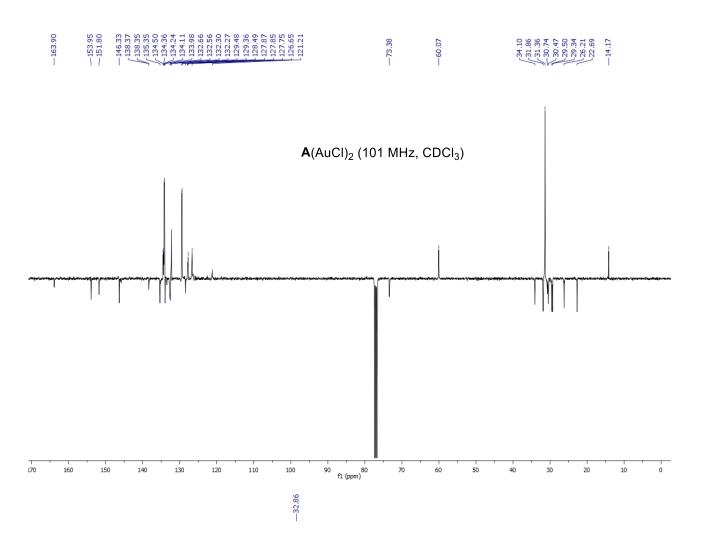
B' (400 MHz, CDCl₃)

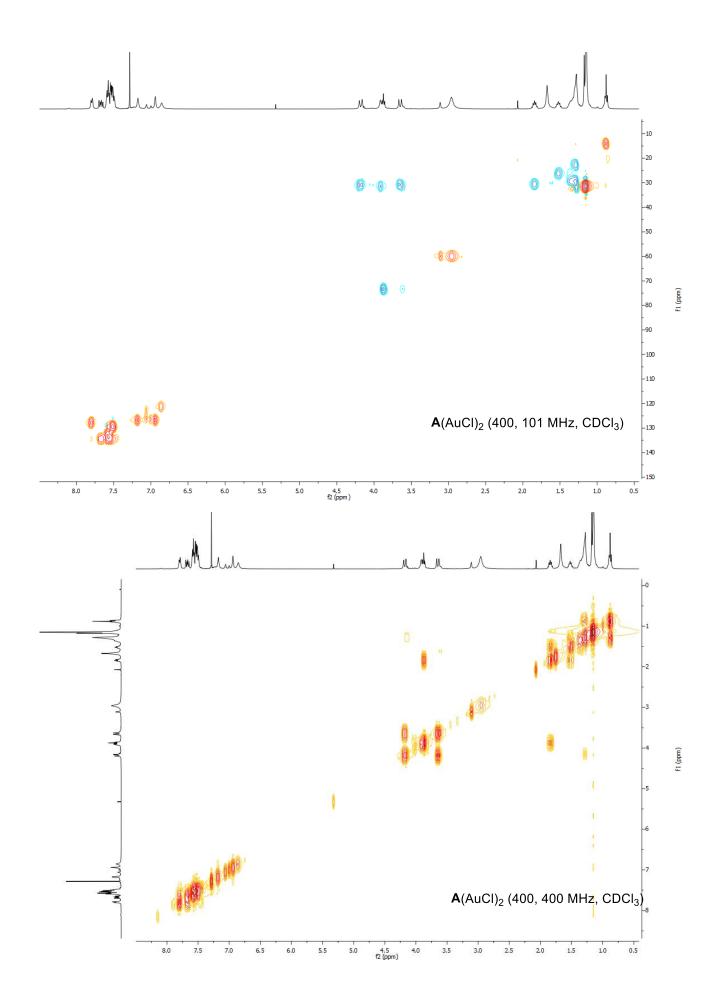

S20

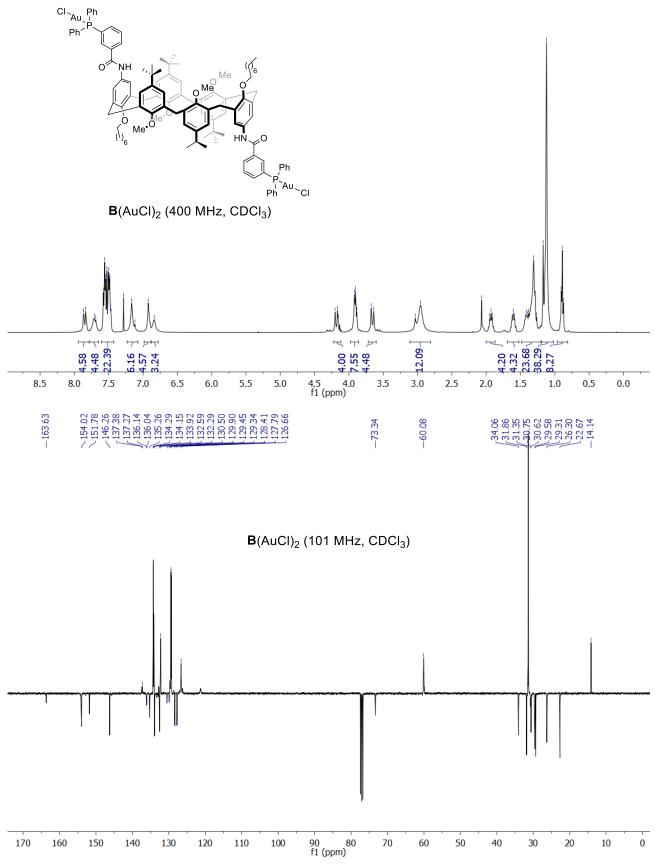

B' (162 MHz, CDCl₃)

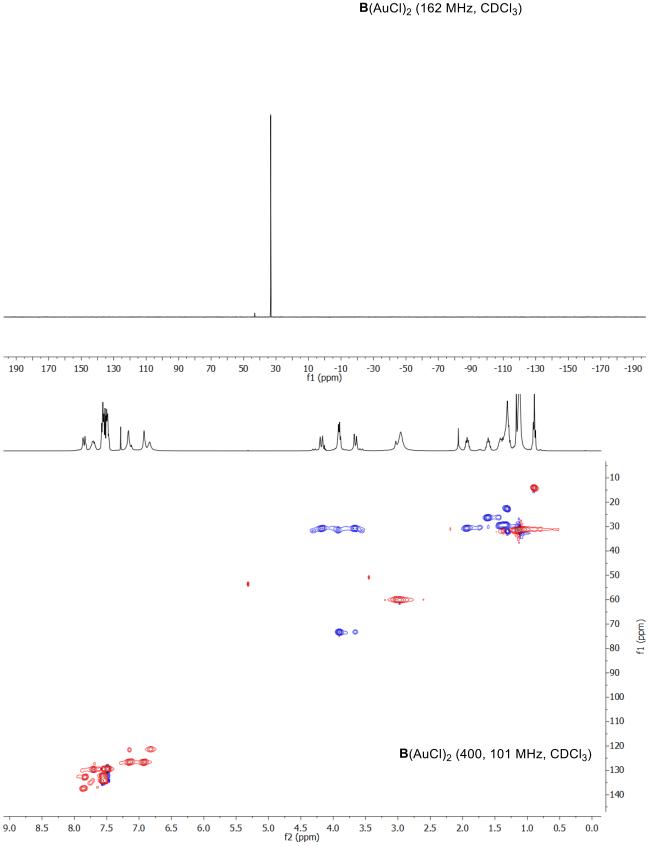

t	
190 170 150 130 110 90 70 50 30 1 f1	0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 . (ppm)



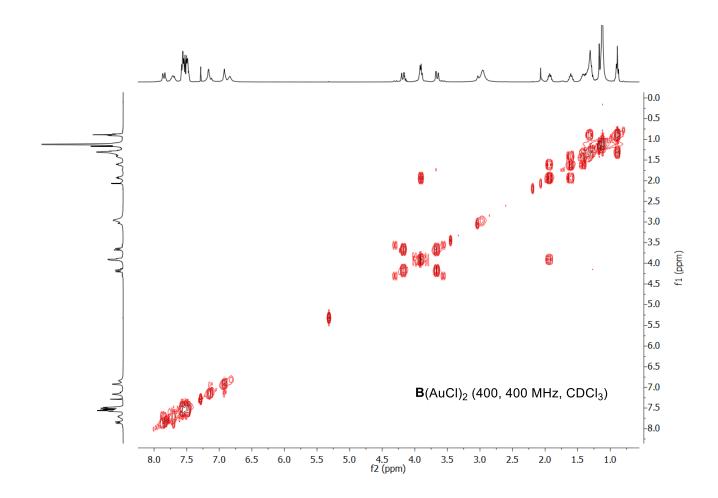

C' (400 MHz, CDCl₃)

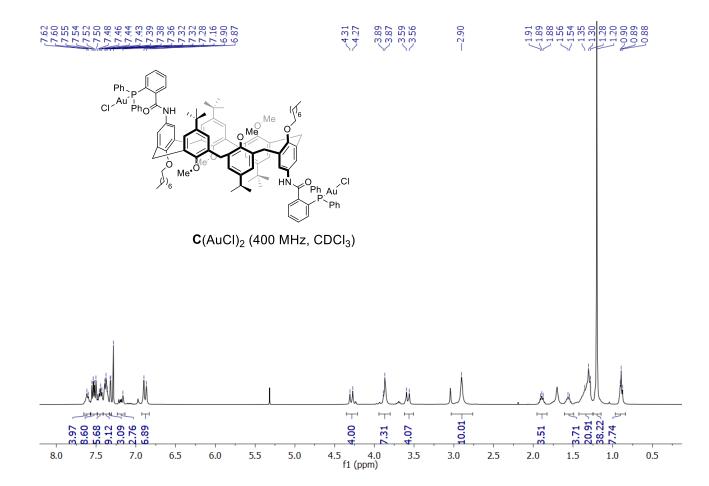

S23

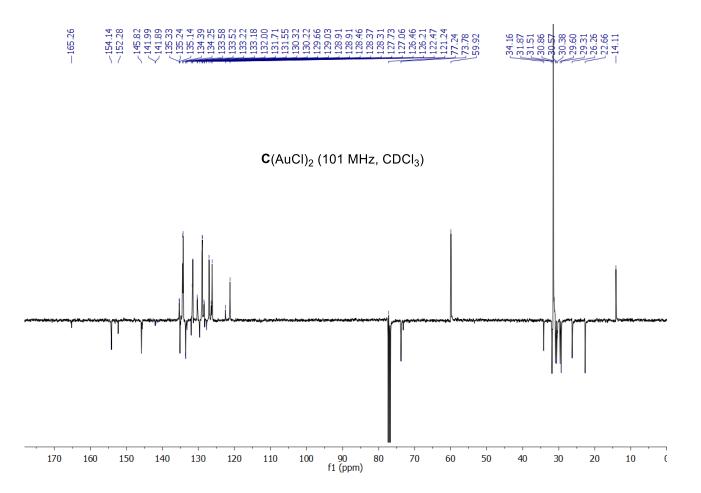


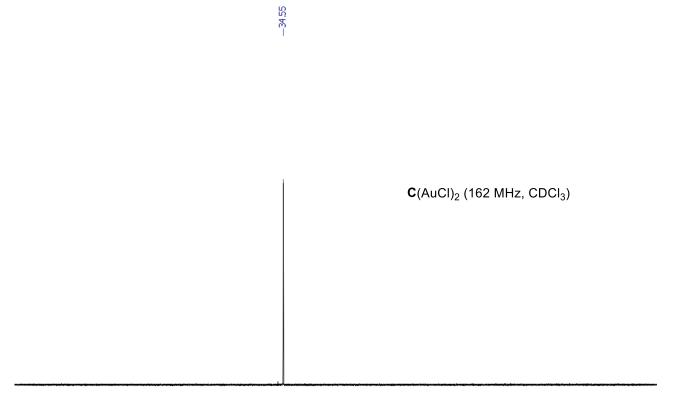

A(AuCl)₂ (162 MHz, CDCl₃)

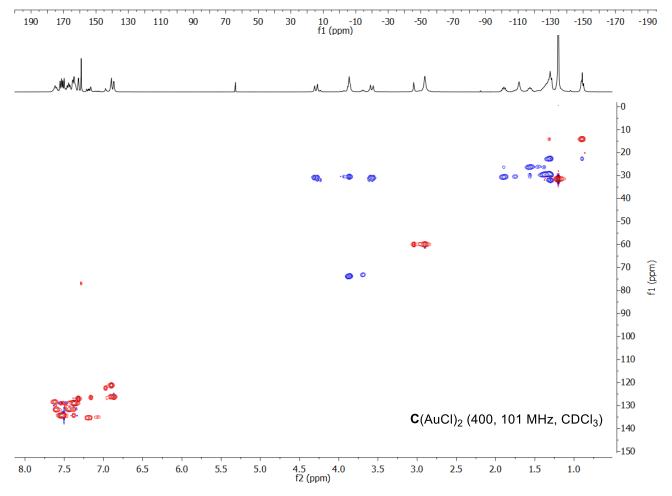
190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 f1 (ppm)

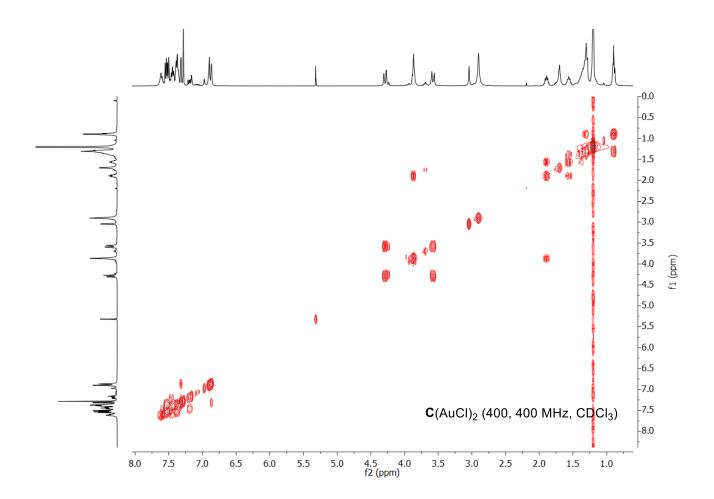


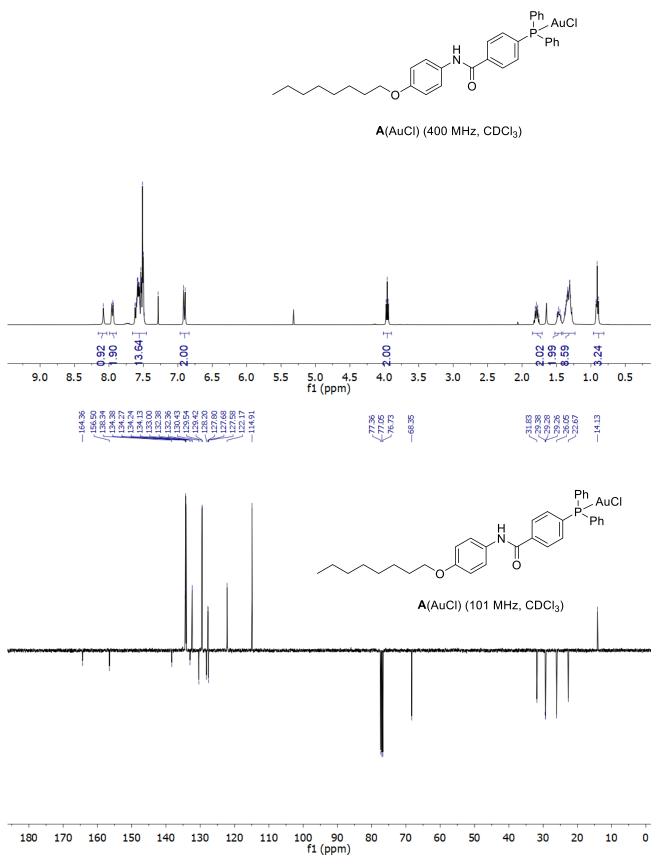


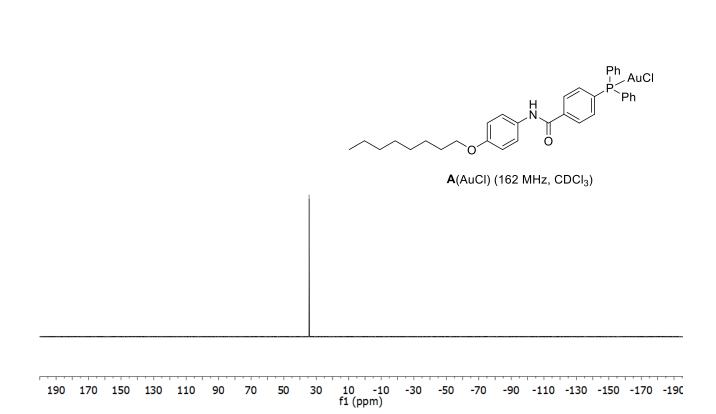


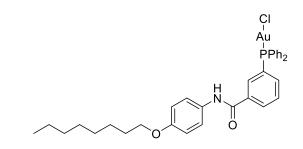

--33.33

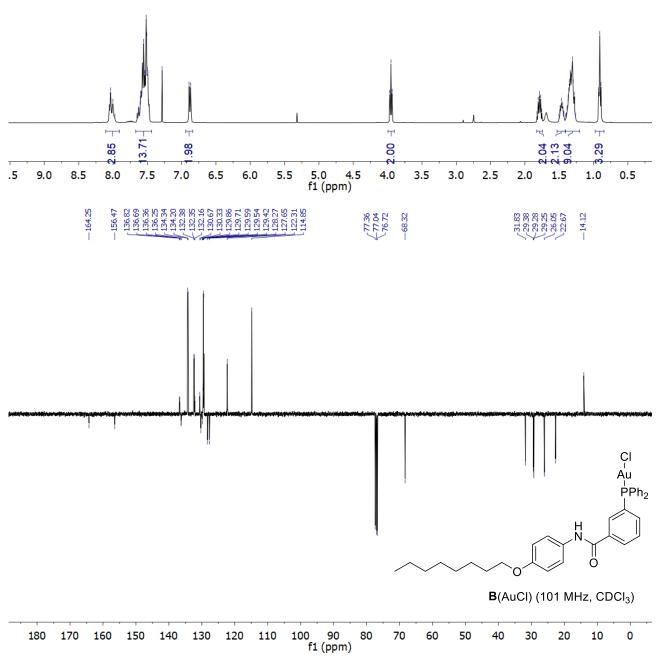

B(AuCl)₂ (162 MHz, CDCl₃)

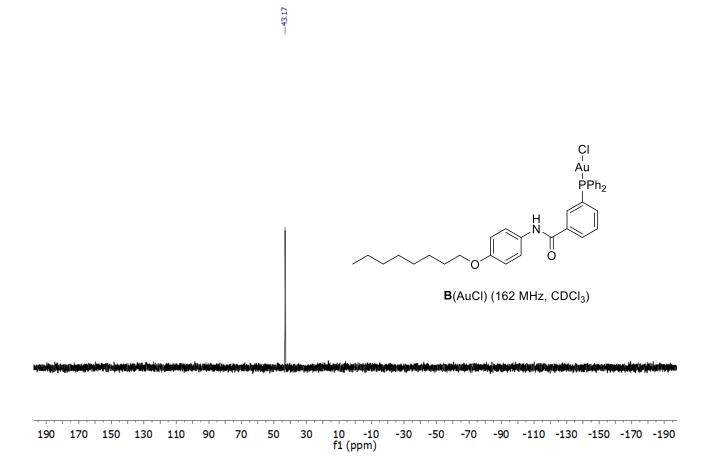




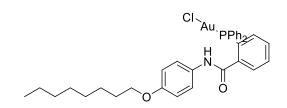


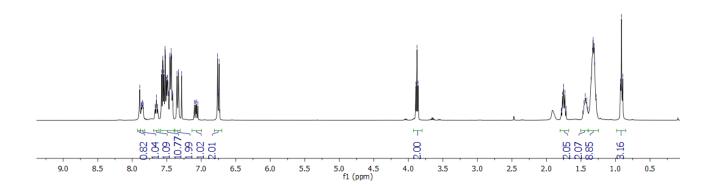


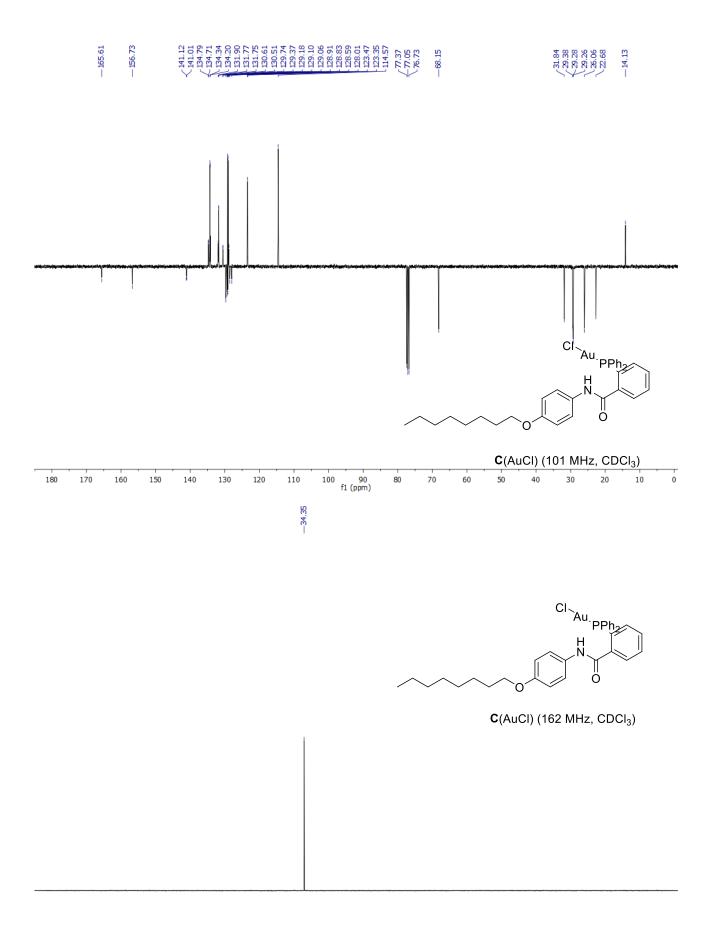



---34.35

S35


B(AuCl) (400 MHz, CDCl₃)




S37

C(AuCl) (400 MHz, CDCl₃)

10 -10 f1 (ppm) 190 30 170 150 130 110 90 70 50 -30 -50 -70 -90 -110 -130 -150 -170 -190

• References

[1] M. Bazzoni, V. Zanichelli, L. Casimiro, C. Massera, A. Credi, A. Secchi, S. Silvi, A. Arduini, *Eur. J. Org. Chem.* **2019**, *2019*, 3513-3524.

[2] a) P. Dydio, R. J. Detz, B. de Bruin, J. N. H. Reek, *J. Am. Chem. Soc.* **2014**, *136*, 8418-8429; b) S. Tasan, O. Zava, B. Bertrand, C. Bernhard, C. Goze, M. Picquet, P. Le Gendre, P. Harvey, F. Denat, A. Casini, E. Bodio, *Dalton Trans.* **2013**, *42*, 6102-6109; c) Y. K. Kim, S. J. Lee, K. H. Ahn, *J. Org. Chem.* **2000**, *65*, 7807-7813.

[3] M. E. Krafft, L. V. R. Bonaga, J. A. Wright, C. Hirosawa, J. Org. Chem. 2002, 67, 1233-1246.