Spontaneous dissociation of Co2(CO)8 and autocatalytic growth of Co on SiO2: A combined experimental and theoretical investigation

Kaliappan Muthukumar, Harald O. Jeschke, Roser Valentí, Evgeniya Begun, Johannes Schwenk, Fabrizio Porrati and Michael Huth
Beilstein J. Nanotechnol. 2012, 3, 546–555. https://doi.org/10.3762/bjnano.3.63

Cite the Following Article

Spontaneous dissociation of Co2(CO)8 and autocatalytic growth of Co on SiO2: A combined experimental and theoretical investigation
Kaliappan Muthukumar, Harald O. Jeschke, Roser Valentí, Evgeniya Begun, Johannes Schwenk, Fabrizio Porrati and Michael Huth
Beilstein J. Nanotechnol. 2012, 3, 546–555. https://doi.org/10.3762/bjnano.3.63

How to Cite

Muthukumar, K.; Jeschke, H. O.; Valentí, R.; Begun, E.; Schwenk, J.; Porrati, F.; Huth, M. Beilstein J. Nanotechnol. 2012, 3, 546–555. doi:10.3762/bjnano.3.63

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Kuprava, A.; Huth, M. Fast and Efficient Simulation of the FEBID Process with Thermal Effects. Nanomaterials (Basel, Switzerland) 2023, 13, 858. doi:10.3390/nano13050858
  • Sobell, Z. C.; George, S. M. Electron-Enhanced Atomic Layer Deposition of Titanium Nitride Films Using an Ammonia Reactive Background Gas. Chemistry of Materials 2022, 34, 9624–9633. doi:10.1021/acs.chemmater.2c02341
  • Sushko, G.; Verkhovtsev, A. V.; Solov'yov, I. A.; Solov'yov, A. V. Multiscale Modeling of Irradiation-Driven Chemistry Processes. Lecture Notes in Nanoscale Science and Technology; Springer International Publishing, 2022; pp 347–388. doi:10.1007/978-3-030-99291-0_8
  • Utke, I.; Swiderek, P.; Höflich, K.; Madajska, K.; Jurczyk, J.; Martinović, P.; Szymańska, I. Coordination and organometallic precursors of group 10 and 11: Focused electron beam induced deposition of metals and insight gained from chemical vapour deposition, atomic layer deposition, and fundamental surface and gas phase studies. Coordination Chemistry Reviews 2022, 458, 213851. doi:10.1016/j.ccr.2021.213851
  • Huth, M.; Porrati, F.; Barth, S. Living up to its potential—Direct-write nanofabrication with focused electron beams. Journal of Applied Physics 2021, 130, 170901. doi:10.1063/5.0064764
  • Prosvetov, A.; Verkhovtsev, A. V.; Sushko, G. B.; Solov’yov, A. V. Irradiation-driven molecular dynamics simulation of the FEBID process for Pt(PF3)4. Beilstein journal of nanotechnology 2021, 12, 1151–1172. doi:10.3762/bjnano.12.86
  • Verkhovtsev, A. V.; Solov'yov, I. A.; Solov’yov, A. V. Advances in multiscale modeling for novel and emerging technologies. The European Physical Journal D 2021, 75, 1–18. doi:10.1140/epjd/s10053-021-00213-5
  • Preischl, C.; Le, L. H.; Bilgilisoy, E.; Gölzhäuser, A.; Marbach, H. Exploring the fabrication and transfer mechanism of metallic nanostructures on carbon nanomembranes via focused electron beam induced processing. Beilstein journal of nanotechnology 2021, 12, 319–329. doi:10.3762/bjnano.12.26
  • Preischl, C.; Rohdenburg, M.; Bilgilisoy, E.; Cartaya, R.; Swiderek, P.; Marbach, H. Ultrathin Carbon Nanomembranes from 5,10,15,20-Tetraphenylporphyrin: Electron Beam Induced Fabrication and Functionalization via Focused Electron Beam Induced Processing. The Journal of Physical Chemistry C 2020, 124, 28335–28344. doi:10.1021/acs.jpcc.0c09694
  • Fronzi, M.; Bishop, J. W.; Martin, A. A.; Assadi, M.; Regan, B.; Stampfl, C.; Aharonovich, I.; Ford, M. J.; Toth, M. Role of knock-on in electron beam induced etching of diamond. Carbon 2020, 164, 51–58. doi:10.1016/j.carbon.2020.03.039
  • Zhang, Z. V.; Liu, S.; Girolami, G. S.; Abelson, J. R. Area-selective chemical vapor deposition of cobalt from dicobalt octacarbonyl: Enhancement of dielectric-dielectric selectivity by adding a coflow of NH3. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 2020, 38, 033401. doi:10.1116/1.5144501
  • Skoric, L.; Sanz-Hernández, D.; Meng, F.; Donnelly, C.; Merino-Aceituno, S.; Fernández-Pacheco, A. Layer-by-layer growth of complex-shaped three-dimensional nanostructures with focused electron beams. Nano letters 2019, 20, 184–191. doi:10.1021/acs.nanolett.9b03565
  • dos Santos, M. V. P.; Barth, S.; Béron, F.; Pirota, K. R.; Pinto, A.; Sinnecker, J.; Moshkalev, S. A.; Diniz, J. A.; Utke, I. Magnetoelectrical Transport Improvements of Postgrowth Annealed Iron–Cobalt Nanocomposites: A Possible Route for Future Room-Temperature Spintronics. ACS Applied Nano Materials 2018, 1, 3364–3374. doi:10.1021/acsanm.8b00581
  • Drost, M.; Tu, F.; Berger, L.; Preischl, C.; Zhou, W.; Gliemann, H.; Wöll, C.; Marbach, H. Surface-Anchored Metal–Organic Frameworks as Versatile Resists for Gas-Assisted E-Beam Lithography: Fabrication of Sub-10 Nanometer Structures. ACS nano 2018, 12, 3825–3835. doi:10.1021/acsnano.8b01071
  • Muthukumar, K.; Jeschke, H. O.; Valentí, R. Dynamics and fragmentation mechanism of (C5H4CH3)Pt(CH3)3 on SiO2 surfaces. Beilstein journal of nanotechnology 2018, 9, 711–720. doi:10.3762/bjnano.9.66
  • P, R. K. T.; Weirich, P. M.; Hrachowina, L.; Hanefeld, M.; Bjornsson, R.; Hrodmarsson, H. R.; Barth, S.; Fairbrother, D. H.; Huth, M.; Ingólfsson, O. Electron interactions with the heteronuclear carbonyl precursor H2FeRu3(CO)13 and comparison with HFeCo3(CO)12: from fundamental gas phase and surface science studies to focused electron beam induced deposition. Beilstein journal of nanotechnology 2018, 9, 555–579. doi:10.3762/bjnano.9.53
  • dos Santos, M. V. P.; Szkudlarek, A.; Rydosz, A.; Guerra-Nuñez, C.; Béron, F.; Pirota, K. R.; Moshkalev, S. A.; Diniz, J. A.; Utke, I. Comparative study of post-growth annealing of Cu(hfac)2, Co2(CO)8 and Me2Au(acac) metal precursors deposited by FEBID. Beilstein journal of nanotechnology 2018, 9, 91–101. doi:10.3762/bjnano.9.11
  • Huth, M.; Porrati, F.; Dobrovolskiy, O. V. Focused electron beam induced deposition meets materials science. Microelectronic Engineering 2018, 185-186, 9–28. doi:10.1016/j.mee.2017.10.012
  • Sanz-Hernández, D.; Fernández-Pacheco, A. Modelling focused electron beam induced deposition beyond Langmuir adsorption. Beilstein journal of nanotechnology 2017, 8, 2151–2161. doi:10.3762/bjnano.8.214
  • Drost, M.; Tu, F.; Vollnhals, F.; Szenti, I.; Kiss, J.; Marbach, H. On the Principles of Tweaking Nanostructure Fabrication via Focused Electron Beam Induced Processing Combined with Catalytic Growth Processes. Small Methods 2017, 1, 1700095. doi:10.1002/smtd.201700095
Other Beilstein-Institut Open Science Activities