Thermal noise limit for ultra-high vacuum noncontact atomic force microscopy

Jannis Lübbe, Matthias Temmen, Sebastian Rode, Philipp Rahe, Angelika Kühnle and Michael Reichling
Beilstein J. Nanotechnol. 2013, 4, 32–44. https://doi.org/10.3762/bjnano.4.4

Supporting Information

Supporting Information File 1: Experimental details and theory.
Format: PDF Size: 1.1 MB Download

Cite the Following Article

Thermal noise limit for ultra-high vacuum noncontact atomic force microscopy
Jannis Lübbe, Matthias Temmen, Sebastian Rode, Philipp Rahe, Angelika Kühnle and Michael Reichling
Beilstein J. Nanotechnol. 2013, 4, 32–44. https://doi.org/10.3762/bjnano.4.4

How to Cite

Lübbe, J.; Temmen, M.; Rode, S.; Rahe, P.; Kühnle, A.; Reichling, M. Beilstein J. Nanotechnol. 2013, 4, 32–44. doi:10.3762/bjnano.4.4

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Guberna, E.; Margolin, I.; Kalika, E.; Zarubin, S.; Zhuk, M.; Chouprik, A. Giant Electromechanical Effect in Piezoelectric Nanomembranes Based on Hf0.5Zr0.5O2. ACS applied materials & interfaces 2023, 16, 975–984. doi:10.1021/acsami.3c11141
  • Sharma, M.; Sathyadharma Prasad, A.; Freitag, N. H.; Büchner, B.; Mühl, T. Coupled mechanical oscillator enables precise detection of nanowire flexural vibrations. Communications Physics 2023, 6. doi:10.1038/s42005-023-01466-9
  • Jani, N.; Chakraborty, G.; Verma, S. Parametrically excited microcantilever beam under large deflection and mass sensing. Meccanica 2023, 58, 933–957. doi:10.1007/s11012-023-01656-3
  • Enami, W.; Yabuno, H.; Yamamoto, Y.; Matsumoto, S. Mode shift detection of coupled resonators through parametric resonance and its application to mass sensing. Nonlinear Dynamics 2022, 110, 117–129. doi:10.1007/s11071-022-07637-7
  • Chouprik, A.; Kirtaev, R.; Korostylev, E.; Mikheev, V.; Spiridonov, M.; Negrov, D. Nanoscale Doping and Its Impact on the Ferroelectric and Piezoelectric Properties of Hf0.5Zr0.5O2. Nanomaterials (Basel, Switzerland) 2022, 12, 1483. doi:10.3390/nano12091483
  • Voglhuber-Brunnmaier, T.; Jakoby, B. Electromechanical resonators for sensing fluid density and viscosity—a review. Measurement Science and Technology 2021, 33, 012001. doi:10.1088/1361-6501/ac2c4a
  • Milde, P.; Langenhorst, M.; Hölscher, H.; Rottmann-Matthes, J.; Hundertmark, D.; Eng, L. M.; Hoffmann-Vogel, R. Out-of-equilibrium optomechanical resonance self-excitation. Journal of Applied Physics 2021, 130, 035303. doi:10.1063/5.0054509
  • Jani, N.; Chakraborty, G. Feedback Based Parametric Actuation with Sensor Nonlinearity and Mass Sensing. Journal of Vibration Engineering 2021, 1–16.
  • Jani, N.; Chakraborty, G. Feedback Based Parametric Actuation with Sensor Nonlinearity and Mass Sensing. Journal of Vibration Engineering & Technologies 2021, 9, 1619–1634. doi:10.1007/s42417-021-00317-7
  • Ritz, C.; Wagner, T.; Stemmer, A. Measurement of electrostatic tip-sample interactions by time-domain Kelvin probe force microscopy. Beilstein journal of nanotechnology 2020, 11, 911–921. doi:10.3762/bjnano.11.76
  • Schillers, H. Measuring the Elastic Properties of Living Cells. Methods in molecular biology (Clifton, N.J.) 2018, 1886, 291–313. doi:10.1007/978-1-4939-8894-5_17
  • Perelló-Roig, R.; Verd, J.; Bota, S.; Segura, J. Thermomechanical Noise Characterization in Fully Monolithic CMOS-MEMS Resonators. Sensors (Basel, Switzerland) 2018, 18, 3124. doi:10.3390/s18093124
  • Perello-Roig, R.; Verd, J.; Bota, S.; Segura, J. ISCAS - Frequency Fluctuations in CMOS-MEMS Oscillators: Towards the Thermomechanical Limit. In 2018 IEEE International Symposium on Circuits and Systems (ISCAS), IEEE, 2018; pp 1–5. doi:10.1109/iscas.2018.8351349
  • Olbrich, R.; Murgida, G. E.; Ferrari, V.; Barth, C.; Llois, A. M.; Reichling, M.; Ganduglia-Pirovano, M. V. Surface Stabilizes Ceria in Unexpected Stoichiometry. The Journal of Physical Chemistry C 2017, 121, 6844–6851. doi:10.1021/acs.jpcc.7b00956
  • Lübbe, J.; Temmen, M.; Rahe, P.; Reichling, M. Noise in NC-AFM measurements with significant tip-sample interaction. Beilstein journal of nanotechnology 2016, 7, 1885–1904. doi:10.3762/bjnano.7.181
  • Arima, E.; Wen, H.; Naitoh, Y.; Li, Y. J.; Sugawara, Y. Development of low temperature atomic force microscopy with an optical beam deflection system capable of simultaneously detecting the lateral and vertical forces. The Review of scientific instruments 2016, 87, 093113. doi:10.1063/1.4962865
  • von Schmidsfeld, A.; Nörenberg, T.; Temmen, M.; Reichling, M. Understanding interferometry for micro-cantilever displacement detection. Beilstein journal of nanotechnology 2016, 7, 841–851. doi:10.3762/bjnano.7.76
  • Nguyen, T. T.; Mow-Lowry, C. M.; Slagmolen, B. J. J.; Miller, J.; Mullavey, A.; Goßler, S.; Altin, P. A.; Shaddock, D. A.; McClelland, D. E. Frequency dependence of thermal noise in gram-scale cantilever flexures. Physical Review D 2015, 92, 112004. doi:10.1103/physrevd.92.112004
  • Nguyen, T. T.-H.; Mow-Lowry, C. M.; Slagmolen, B. J. J.; Miller, J. J.; Mullavey, A.; Altin, P. A.; Shaddock, D. A.; McClelland, D. E.; Gossler, S. Frequency dependence of thermal noise in gram-scale cantilever flexures. Physical Review Letters 2015.
  • Morawski, I.; Spiegelberg, R.; Korte, S.; Voigtländer, B. Combined frequency modulated atomic force microscopy and scanning tunneling microscopy detection for multi-tip scanning probe microscopy applications. The Review of scientific instruments 2015, 86, 123703. doi:10.1063/1.4936975
Other Beilstein-Institut Open Science Activities