Influence of the shape and surface oxidation in the magnetization reversal of thin iron nanowires grown by focused electron beam induced deposition

Luis A. Rodríguez, Lorenz Deen, Rosa Córdoba, César Magén, Etienne Snoeck, Bert Koopmans and José M. De Teresa
Beilstein J. Nanotechnol. 2015, 6, 1319–1331. https://doi.org/10.3762/bjnano.6.136

Supporting Information

Supporting Information File 1: Structural and compositional characterization of the iron nanowires.
Format: PDF Size: 486.5 KB Download
Supporting Information File 2: Additional information about the profile shape of the nanowires and micromagnetic simulations.
Format: PDF Size: 260.0 KB Download

Cite the Following Article

Influence of the shape and surface oxidation in the magnetization reversal of thin iron nanowires grown by focused electron beam induced deposition
Luis A. Rodríguez, Lorenz Deen, Rosa Córdoba, César Magén, Etienne Snoeck, Bert Koopmans and José M. De Teresa
Beilstein J. Nanotechnol. 2015, 6, 1319–1331. https://doi.org/10.3762/bjnano.6.136

How to Cite

Rodríguez, L. A.; Deen, L.; Córdoba, R.; Magén, C.; Snoeck, E.; Koopmans, B.; De Teresa, J. M. Beilstein J. Nanotechnol. 2015, 6, 1319–1331. doi:10.3762/bjnano.6.136

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Lasseter, J.; Rack, P. D.; Randolph, S. J. Selected Area Deposition of PtCx Nanostructures: Implications for Functional Coatings of 3D Nanoarchitectures. ACS Applied Nano Materials 2022, 5, 10890–10899. doi:10.1021/acsanm.2c02182
  • Jungwirth, F.; Knez, D.; Porrati, F.; Schuck, A. G.; Huth, M.; Plank, H.; Barth, S. Vanadium and Manganese Carbonyls as Precursors in Electron-Induced and Thermal Deposition Processes. Nanomaterials (Basel, Switzerland) 2022, 12, 1110. doi:10.3390/nano12071110
  • Bilgilisoy, E.; Thorman, R. M.; Barclay, M.; Marbach, H.; Fairbrother, D. H. Low Energy Electron- and Ion-Induced Surface Reactions of Fe(CO)5 Thin Films. The Journal of Physical Chemistry C 2021, 125, 17749–17760. doi:10.1021/acs.jpcc.1c05826
  • Bhatia, E.; Hussain, Z.; Reddy, V. R.; Senapati, K. Study of magnetization reversal in Néel and Bloch regime of nickel and permalloy stripes using Kerr microscopy. Physica B: Condensed Matter 2021, 609, 412877. doi:10.1016/j.physb.2021.412877
  • Pablo-Navarro, J.; Sangiao, S.; Magén, C.; de Teresa, J. M. Nanofabrication - Focused electron beam induced deposition. Nanofabrication; IOP Publishing, 2020; pp 4–1-4-39. doi:10.1088/978-0-7503-2608-7ch4
  • Barth, S.; Huth, M.; Jungwirth, F. Precursors for direct-write nanofabrication with electrons. Journal of Materials Chemistry C 2020, 8, 15884–15919. doi:10.1039/d0tc03689g
  • Fernández-Pacheco, A.; Skoric, L.; de Teresa, J. M.; Pablo-Navarro, J.; Huth, M.; Dobrovolskiy, O. V. Writing 3D Nanomagnets Using Focused Electron Beams. Materials (Basel, Switzerland) 2020, 13, 3774. doi:10.3390/ma13173774
  • Plank, H.; Winkler, R.; Schwalb, C. H.; Hütner, J.; Fowlkes, J. D.; Rack, P. D.; Utke, I.; Huth, M. Focused Electron Beam-Based 3D Nanoprinting for Scanning Probe Microscopy: A Review. Micromachines 2019, 11, 48. doi:10.3390/mi11010048
  • Li, R.; Li, X.; Yang, P.-a.; Ruan, H. High-aspect-ratio iron nanowires: magnetic field-assisted in situ reduction synthesis and extensive parametric study. Nanotechnology 2019, 31, 145601. doi:10.1088/1361-6528/ab622f
  • Pablo-Navarro, J.; Winkler, R.; Haberfehlner, G.; Magén, C.; Plank, H.; de Teresa, J. M. In situ real-time annealing of ultrathin vertical Fe nanowires grown by focused electron beam induced deposition. Acta Materialia 2019, 174, 379–386. doi:10.1016/j.actamat.2019.05.035
  • Méndez, M.; Vega, V.; González, S.; Caballero-Flores, R.; García, J.; Prida, V. M. Effect of Sharp Diameter Geometrical Modulation on the Magnetization Reversal of Bi-Segmented FeNi Nanowires. Nanomaterials (Basel, Switzerland) 2018, 8, 595. doi:10.3390/nano8080595
  • P, R. K. T.; Weirich, P. M.; Hrachowina, L.; Hanefeld, M.; Bjornsson, R.; Hrodmarsson, H. R.; Barth, S.; Fairbrother, D. H.; Huth, M.; Ingólfsson, O. Electron interactions with the heteronuclear carbonyl precursor H2FeRu3(CO)13 and comparison with HFeCo3(CO)12: from fundamental gas phase and surface science studies to focused electron beam induced deposition. Beilstein journal of nanotechnology 2018, 9, 555–579. doi:10.3762/bjnano.9.53
  • Marashdeh, A.; Tiesma, T.; van Velzen, N. J. C.; Harder, S.; Havenith, R. W. A.; De Hosson, J. T. M.; van Dorp, W. F. The rational design of a Au(I) precursor for focused electron beam induced deposition. Beilstein journal of nanotechnology 2017, 8, 2753–2765. doi:10.3762/bjnano.8.274
  • Krajewski, M. Magnetic-field-induced synthesis of magnetic wire-like micro- and nanostructures. Nanoscale 2017, 9, 16511–16545. doi:10.1039/c7nr05823c
  • Borie, B.; Kehlberger, A.; Wahrhusen, J.; Grimm, H.; Kläui, M. Geometrical dependence of domain wall propagation and nucleation fields in magnetic domain wall sensor devices. Physical Review Applied 2017, 8, 024017. doi:10.1103/physrevapplied.8.024017
  • Ortega, E.; Reddy, S. M.; Betancourt, I.; Roughani, S.; Stadler, B. J. H.; Ponce, A. Magnetic ordering in 45 nm-diameter multisegmented FeGa/Cu nanowires: single nanowires and arrays. Journal of Materials Chemistry C 2017, 5, 7546–7552. doi:10.1039/c7tc02314f
  • Pablo‐Navarro, J.; Magén, C.; María De Teresa, J. doi:10.1002/9783527808465.emc2016.5827
  • Tu, F.; Drost, M.; Vollnhals, F.; Späth, A.; Carrasco, E.; Fink, R. H.; Marbach, H. On the magnetic properties of iron nanostructures fabricated via focused electron beam induced deposition and autocatalytic growth processes. Nanotechnology 2016, 27, 355302. doi:10.1088/0957-4484/27/35/355302
  • Pablo-Navarro, J.; Magén, C.; de Teresa, J. M. Three-dimensional core-shell ferromagnetic nanowires grown by focused electron beam induced deposition. Nanotechnology 2016, 27, 285302. doi:10.1088/0957-4484/27/28/285302
  • De Teresa, J. M.; Fernández-Pacheco, A.; Córdoba, R.; Serrano-Ramón, L.; Sangiao, S.; Ibarra, M. R. Review of magnetic nanostructures grown by focused electron beam induced deposition (FEBID). Journal of Physics D: Applied Physics 2016, 49, 243003. doi:10.1088/0022-3727/49/24/243003
Other Beilstein-Institut Open Science Activities