Nanoscale effects in the characterization of viscoelastic materials with atomic force microscopy: coupling of a quasi-three-dimensional standard linear solid model with in-plane surface interactions

Santiago D. Solares
Beilstein J. Nanotechnol. 2016, 7, 554–571. https://doi.org/10.3762/bjnano.7.49

Supporting Information

Supporting Information File 1: Description of software files provided.
Overview of software files content and usage.
Format: PDF Size: 46.4 KB Download
Supporting Information File 2: Trimodal AFM with quasi-3D standard linear solid model sample, with in-plane surface effects added.
Software source file written in C programming language.
Format: ZIP Size: 6.0 KB Download
Supporting Information File 3: Parameter input file.
User-defined input parameters.
Format: ZIP Size: 401 B Download

Cite the Following Article

Nanoscale effects in the characterization of viscoelastic materials with atomic force microscopy: coupling of a quasi-three-dimensional standard linear solid model with in-plane surface interactions
Santiago D. Solares
Beilstein J. Nanotechnol. 2016, 7, 554–571. https://doi.org/10.3762/bjnano.7.49

How to Cite

Solares, S. D. Beilstein J. Nanotechnol. 2016, 7, 554–571. doi:10.3762/bjnano.7.49

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 477.5 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Khan, R. M.; Rejhon, M.; Li, Y.; Parashar, N.; Riedo, E.; Wixom, R. R.; DelRio, F. W.; Dingreville, R. Probing the Mechanical Properties of 2D Materials via Atomic-Force-Microscopy-Based Modulated Nanoindentation. Small methods 2023, 8, e2301043. doi:10.1002/smtd.202301043
  • Lin, C.-Y. Rethinking and researching the physical meaning of the standard linear solid model in viscoelasticity. Mechanics of Advanced Materials and Structures 2023, 1–16. doi:10.1080/15376494.2022.2156638
  • Lin, C.-Y.; Chen, Y.-C.; Lin, C.-H.; Chang, K.-V. Constitutive Equations for Analyzing Stress Relaxation and Creep of Viscoelastic Materials Based on Standard Linear Solid Model Derived with Finite Loading Rate. Polymers 2022, 14, 2124. doi:10.3390/polym14102124
  • Collinson, D. W.; Sheridan, R. J.; Palmeri, M. J.; Brinson, L. C. Best practices and recommendations for accurate nanomechanical characterization of heterogeneous polymer systems with atomic force microscopy. Progress in Polymer Science 2021, 119, 101420. doi:10.1016/j.progpolymsci.2021.101420
  • Bonyadi, S. Z.; Hasan, M.; Kim, J.; Mahmood, S.; Schulze, K. D.; Dunn, A. C. Review: Friction and Lubrication with High Water Content Crosslinked Hydrogels. Tribology Letters 2020, 68, 1–15. doi:10.1007/s11249-020-01352-3
  • López-Guerra, E. A.; Solares, S. D. On the frequency dependence of viscoelastic material characterization with intermittent-contact dynamic atomic force microscopy: avoiding mischaracterization across large frequency ranges. Beilstein journal of nanotechnology 2020, 11, 1409–1418. doi:10.3762/bjnano.11.125
  • Garcia, R. Nanomechanical mapping of soft materials with the atomic force microscope: methods, theory and applications. Chemical Society reviews 2020, 49, 5850–5884. doi:10.1039/d0cs00318b
  • García, P. D.; Guerrero, C.; Garcia, R. Nanorheology of living cells measured by AFM-based force–distance curves. Nanoscale 2020, 12, 9133–9143. doi:10.1039/c9nr10316c
  • Benaglia, S.; Amo, C. A.; Garcia, R. Fast, quantitative and high resolution mapping of viscoelastic properties with bimodal AFM. Nanoscale 2019, 11, 15289–15297. doi:10.1039/c9nr04396a
  • Czibula, C.; Ganser, C.; Seidlhofer, T.; Teichert, C.; Hirn, U. Transverse viscoelastic properties of pulp fibers investigated with an atomic force microscopy method. Journal of Materials Science 2019, 54, 11448–11461. doi:10.1007/s10853-019-03707-1
  • Cellini, F.; Gao, Y.; Riedo, E. Å-Indentation for non-destructive elastic moduli measurements of supported ultra-hard ultra-thin films and nanostructures. Scientific reports 2019, 9, 4075. doi:10.1038/s41598-019-40636-0
  • Cellini, F.; Gao, Y.; Riedo, E. $\r{A}$-Indentation for non-destructive elastic moduli measurements of supported ultra-hard ultra-thin films and nanostructures. 2019.
  • García, P. D.; Garcia, R. Determination of the viscoelastic properties of a single cell cultured on a rigid support by force microscopy. Nanoscale 2018, 10, 19799–19809. doi:10.1039/c8nr05899g
  • Thorén, P.-A.; Borgani, R.; Forchheimer, D.; Dobryden, I.; Claesson, P. M.; Kassa, H. G.; Leclère, P.; Wang, Y.; Jaeger, H. M.; Haviland, D. B. On modeling and measuring viscoelasticity with dynamic Atomic Force Microscopy. Physical Review Applied 2018, 10, 024017. doi:10.1103/physrevapplied.10.024017
  • López-Guerra, E. A.; Banfi, F.; Solares, S. D.; Ferrini, G. Theory of Single-Impact Atomic Force Spectroscopy in liquids with material contrast. Scientific reports 2018, 8, 7534. doi:10.1038/s41598-018-25828-4
  • Ganser, C.; Czibula, C.; Tscharnuter, D.; Schöberl, T.; Teichert, C.; Hirn, U. Combining adhesive contact mechanics with a viscoelastic material model to probe local material properties by AFM. Soft matter 2017, 14, 140–150. doi:10.1039/c7sm02057k
  • Rubiano, A.; Delitto, D.; Han, S.; Gerber, M. H.; Galitz, C.; Trevino, J. G.; Thomas, R. M.; Hughes, S. J.; Simmons, C. S. Viscoelastic properties of human pancreatic tumors and in vitro constructs to mimic mechanical properties. Acta biomaterialia 2017, 67, 331–340. doi:10.1016/j.actbio.2017.11.037
  • López-Guerra, E. A.; Solares, S. D. Material property analytical relations for the case of an AFM probe tapping a viscoelastic surface containing multiple characteristic times. Beilstein journal of nanotechnology 2017, 8, 2230–2244. doi:10.3762/bjnano.8.223
  • Diaz, A. J.; Noh, H.; Meier, T.; Solares, S. D. High-stress study of bioinspired multifunctional PEDOT:PSS/nanoclay nanocomposites using AFM, SEM and numerical simulation. Beilstein journal of nanotechnology 2017, 8, 2069–2082. doi:10.3762/bjnano.8.207
  • López-Guerra, E. A.; Eslami, B.; Solares, S. D. Calculation of standard viscoelastic responses with multiple retardation times through analysis of static force spectroscopy AFM data. Journal of Polymer Science Part B: Polymer Physics 2017, 55, 804–813. doi:10.1002/polb.24327
Other Beilstein-Institut Open Science Activities