Search results

Search for "Si(111)" in Full Text gives 67 result(s) in Beilstein Journal of Nanotechnology.

Investigating ripple pattern formation and damage profiles in Si and Ge induced by 100 keV Ar+ ion beam: a comparative study

  • Indra Sulania,
  • Harpreet Sondhi,
  • Tanuj Kumar,
  • Sunil Ojha,
  • G R Umapathy,
  • Ambuj Mishra,
  • Ambuj Tripathi,
  • Richa Krishna,
  • Devesh Kumar Avasthi and
  • Yogendra Kumar Mishra

Beilstein J. Nanotechnol. 2024, 15, 367–375, doi:10.3762/bjnano.15.33

Graphical Abstract
  • for Ge(111) and Si(111) targets before and after ion irradiation with 100 keV Ar+ ions at various ion fluences from 3 to 9 × 1017 ions/cm2. The crystallinity of the investigated target was determined by the comparison of the aligned spectrum with the random spectra (black). For the pristine Si and Ge
PDF
Album
Supp Info
Full Research Paper
Published 05 Apr 2024

Determining by Raman spectroscopy the average thickness and N-layer-specific surface coverages of MoS2 thin films with domains much smaller than the laser spot size

  • Felipe Wasem Klein,
  • Jean-Roch Huntzinger,
  • Vincent Astié,
  • Damien Voiry,
  • Romain Parret,
  • Houssine Makhlouf,
  • Sandrine Juillaguet,
  • Jean-Manuel Decams,
  • Sylvie Contreras,
  • Périne Landois,
  • Ahmed-Azmi Zahab,
  • Jean-Louis Sauvajol and
  • Matthieu Paillet

Beilstein J. Nanotechnol. 2024, 15, 279–296, doi:10.3762/bjnano.15.26

Graphical Abstract
  • reference, which is a bare Si(111) wafer with only native oxide. In the following, A(Si111) stands for the integrated intensity of the Si(111) 521 cm−1 mode. This reference is preferred to the Si(100) substrate with 90 ± 6 nm SiO2 to avoid the effects of the SiO2 thickness variations and crystal orientation
PDF
Album
Supp Info
Full Research Paper
Published 07 Mar 2024

A combined gas-phase dissociative ionization, dissociative electron attachment and deposition study on the potential FEBID precursor [Au(CH3)2Cl]2

  • Elif Bilgilisoy,
  • Ali Kamali,
  • Thomas Xaver Gentner,
  • Gerd Ballmann,
  • Sjoerd Harder,
  • Hans-Peter Steinrück,
  • Hubertus Marbach and
  • Oddur Ingólfsson

Beilstein J. Nanotechnol. 2023, 14, 1178–1199, doi:10.3762/bjnano.14.98

Graphical Abstract
  • (500 nm)/Si(111) In this experiment, 4 × 4 µm2 FEBID structures were written with [Au(CH3)2Cl]2 as the precursor using an acceleration voltage of 5 keV and a beam current of 1.5 nA. The fabricated structures were examined with scanning electron microscopy (SEM) and Auger electron spectroscopy (AES
  • (500 nm)/Si(111) substrate (black spectrum), only two main AES signals are visible: The peak at 272 eV is attributed to CKLL Auger transitions of carbon [34], and the peaks at 468, 483, and 503 eV to OKLL Auger transitions of SiO2 [34]. After deposition, AES signals at 69, 181, 272, and 430 eV are
  • ]. The image after the background subtraction is shown in Figure 1d, where the particles can be more clearly distinguished. After background subtraction, some of the deposited nanoparticles appear facetted; however, the majority are spherical. HAADF-STEM on FEBID (SiO2 (500 nm)/Si(111)) As a next step
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2023

Upscaling the urea method synthesis of CoAl layered double hydroxides

  • Camilo Jaramillo-Hernández,
  • Víctor Oestreicher,
  • Martín Mizrahi and
  • Gonzalo Abellán

Beilstein J. Nanotechnol. 2023, 14, 927–938, doi:10.3762/bjnano.14.76

Graphical Abstract
  • prepared by paint spraying on carbon paper. The optimum amount of material for the measurements was calculated by the program “Hephaestus”, which is part of the Demeter package [77]. A Si(111) double-crystal monochromator was used to obtain a monochromatic incident beam, and the intensities of incident and
PDF
Album
Supp Info
Full Research Paper
Published 11 Sep 2023

Effects of focused electron beam irradiation parameters on direct nanostructure formation on Ag surfaces

  • Jānis Sniķeris,
  • Vjačeslavs Gerbreders,
  • Andrejs Bulanovs and
  • Ēriks Sļedevskis

Beilstein J. Nanotechnol. 2022, 13, 1004–1010, doi:10.3762/bjnano.13.87

Graphical Abstract
  • parameters (beam current, focusing, angle of incidence, and amount of hydrocarbons) affects the growth of nanostructures on Ag surfaces undergoing irradiation by focused EB in point mode. Experimental The samples were prepared by sputtering 500 nm thick Ag layers on Si(111) substrates via direct current (DC
PDF
Album
Full Research Paper
Published 22 Sep 2022

Experimental and theoretical study of field-dependent spin splitting at ferromagnetic insulator–superconductor interfaces

  • Peter Machon,
  • Michael J. Wolf,
  • Detlef Beckmann and
  • Wolfgang Belzig

Beilstein J. Nanotechnol. 2022, 13, 682–688, doi:10.3762/bjnano.13.60

Graphical Abstract
  • a Si(111) substrate heated to 800 °C. In a second fabrication step, aluminium/aluminium oxide/copper tunnel junctions were fabricated on the EuS film using e-beam lithography and shadow evaporation. The nominal aluminium film thickness was d = 10 nm. The differential conductance g = dI/dV of the
PDF
Album
Full Research Paper
Published 20 Jul 2022

Thermal oxidation process on Si(113)-(3 × 2) investigated using high-temperature scanning tunneling microscopy

  • Hiroya Tanaka,
  • Shinya Ohno,
  • Kazushi Miki and
  • Masatoshi Tanaka

Beilstein J. Nanotechnol. 2022, 13, 172–181, doi:10.3762/bjnano.13.12

Graphical Abstract
  • oxidation modes – oxidation, etching, and transition modes – in the third of which both oxidation and etching occur. A precise temperature–pressure growth mode diagram was obtained via careful measurements for Si(113), and the results were compared with those for Si(111) in the present work and Si(001) in
  • corresponding to the oxides was observed. Temperature–pressure growth mode diagram Figure 6a and Figure 6b show temperature–pressure growth mode diagrams of thermal oxidation on Si(113) and Si(111), respectively. Characterization of this region as a transition region in which both oxidation and etching occur is
  • ), especially in the transition region [17][18]. In the present work, we investigated the boundary lines between different growth modes precisely. It is clear that the transition region (oxidation and etching) is much narrower for Si(113) than for Si(001) [17] or Si(111). It is considered that a mobile SiO
PDF
Album
Supp Info
Full Research Paper
Published 03 Feb 2022

Molecular assemblies on surfaces: towards physical and electronic decoupling of organic molecules

  • Sabine Maier and
  • Meike Stöhr

Beilstein J. Nanotechnol. 2021, 12, 950–956, doi:10.3762/bjnano.12.71

Graphical Abstract
  • molecules from a semiconducting substrate is discussed for the example of both insulating CaF2 thin films on Si(111) [91] and hydrogen passivation of Ge(001) surfaces [92]. In the first case, three scenarios were compared: PTCDA on Si, on a thin CaF2, and on a thicker CaF2 layer. While isolated PTCDA
PDF
Editorial
Published 23 Aug 2021

In situ transport characterization of magnetic states in Nb/Co superconductor/ferromagnet heterostructures

  • Olena M. Kapran,
  • Roman Morari,
  • Taras Golod,
  • Evgenii A. Borodianskyi,
  • Vladimir Boian,
  • Andrei Prepelita,
  • Nikolay Klenov,
  • Anatoli S. Sidorenko and
  • Vladimir M. Krasnov

Beilstein J. Nanotechnol. 2021, 12, 913–923, doi:10.3762/bjnano.12.68

Graphical Abstract
  • the vacuum. We use a Nb target (99.95% purity) for deposition of S-layers, Co (99.95% purity) for F-layers, and Si (99.999%) for seeding bottom and protective top layers. MLs are grown on a Si(111) wafer. Prior to deposition, targets were precleaned by plasma-etching for 3 min and in addition for 1
PDF
Album
Full Research Paper
Published 17 Aug 2021

Extended iron phthalocyanine islands self-assembled on a Ge(001):H surface

  • Rafal Zuzak,
  • Marek Szymonski and
  • Szymon Godlewski

Beilstein J. Nanotechnol. 2021, 12, 232–241, doi:10.3762/bjnano.12.19

Graphical Abstract
  • (001):H [22][23], Si(111):H [24], and Ge(001):H [25][26][27][28] surfaces are most commonly mentioned. Iron phthalocyanines (FePc) have been studied on Si(111):H [24] and it was concluded that the molecules are weakly coupled to the substrate. Interestingly, in another study, it has been reported that
  • FePc molecules deposited at room temperature on Si(111):H serve as sources of single Fe atoms and undergo de-metalation [29]. Importantly, hydrogen-passivated Si/Ge surfaces may also act as platforms for nanostructurization by the atomically precise desorption of individual hydrogen atoms and the
  • characteristic for metal phthalocyanines that are isolated from the influence of the substrate, as already shown for FePc on Si(111):H [24] or on graphene [17]. We note here that the image corresponds well to previously reported images acquired at voltages below the values at which resonances on a central atom
PDF
Supp Info
Full Research Paper
Published 05 Mar 2021

PTCDA adsorption on CaF2 thin films

  • Philipp Rahe

Beilstein J. Nanotechnol. 2020, 11, 1615–1622, doi:10.3762/bjnano.11.144

Graphical Abstract
  • functionality. Here, the molecular properties of 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA) adsorbed on insulating CaF2 thin films that were grown on Si(111) surfaces are studied. Scanning tunnelling microscopy is used to compare the properties of PTCDA molecules adsorbed on a partly CaF1-covered Si
  • (111) surface with deposition on thicker CaF2/CaF1/Si(111) films. The identification of mostly single molecules on the CaF1/Si(111) interface layer is explained by the presence of atomic-size defects within this layer. Geometry-optimisation calculations using density functional theory reveal a geometry
  • partially KBr-covered Ag(111) surfaces [24] as well as for cyanoporphyrin molecules on KBr-covered Cu(111) surfaces [26]. Here, the understanding of molecular adsorption on insulating thin films is extended by studying an insulator-on-semiconductor system, namely CaF2 thin films grown on Si(111) surfaces
PDF
Album
Full Research Paper
Published 26 Oct 2020

Protruding hydrogen atoms as markers for the molecular orientation of a metallocene

  • Linda Laflör,
  • Michael Reichling and
  • Philipp Rahe

Beilstein J. Nanotechnol. 2020, 11, 1432–1438, doi:10.3762/bjnano.11.127

Graphical Abstract
  • /CaF1/Si(111) thin film samples under ultrahigh vacuum conditions (p < 5 × 10−10 mbar) in two separate systems equipped with appropriate facilities for in situ sample preparation. Bulk CaF2 crystals (Korth Kristalle, Altenholz, Germany) were cleaved in vacuum [24] after degassing the crystal and sample
  • evaporator (Focus GmbH, Huenstetten, Germany) on freshly prepared Si(111)-(7 × 7) surfaces held at about 930 K. Silicon substrates were highly B-doped p-type Si(111) samples (Institute of Electronic Materials Technology, Warsaw, Poland) with the (7 × 7) reconstruction prepared by flash cycles. Further
  • samples, the surface direction was determined by cleaving the crystal after the NC-AFM experiments along a (111) plane other than the surface plane. For thin film samples, the orientation of the Si(111)-(7 × 7) unit cell was measured by scanning tunnelling microscopy (STM) and the direction was
PDF
Album
Full Research Paper
Published 22 Sep 2020

Analysis of catalyst surface wetting: the early stage of epitaxial germanium nanowire growth

  • Owen C. Ernst,
  • Felix Lange,
  • David Uebel,
  • Thomas Teubner and
  • Torsten Boeck

Beilstein J. Nanotechnol. 2020, 11, 1371–1380, doi:10.3762/bjnano.11.121

Graphical Abstract
  • the results for gold droplet formation on Si(111). A decrease in droplet number and an increase in droplet diameter with increasing temperature can be visualized. The droplet diameter distribution is described by a LSW distribution. Figure 3 shows scanning electron microscopy (SEM) and transmission
  • significant change in droplet size. Moreover, it must be taken into account that Si(111) substrates were used for the experiments. Due to the anisotropy of silicon, the values shown here cannot be used quantitatively for other crystal orientations, since they have different surface and interfacial energies
  • were used for these experiments: The first substrate was single-crystalline Si(111) wafers of 25 × 25 × 0.525 mm3 in size. These wafers where chemically cleaned by the conventional Radio Corporation of America (RCA) etching processes, known as RCA 1 and RCA 2, to get hydrophilic silicon surfaces
PDF
Album
Supp Info
Full Research Paper
Published 09 Sep 2020

Gas-sensing features of nanostructured tellurium thin films

  • Dumitru Tsiulyanu

Beilstein J. Nanotechnol. 2020, 11, 1010–1018, doi:10.3762/bjnano.11.85

Graphical Abstract
  • sensing parameters did not differ much from the similar parameters obtained earlier for microcrystalline Te films. Further investigations have been extended to Te nanotubes grown on quartz or Si(111) substrates through a catalyst-free growing process in a furnace filled with argon [21]. Another study used
PDF
Album
Full Research Paper
Published 10 Jul 2020

Kelvin probe force microscopy work function characterization of transition metal oxide crystals under ongoing reduction and oxidation

  • Dominik Wrana,
  • Karol Cieślik,
  • Wojciech Belza,
  • Christian Rodenbücher,
  • Krzysztof Szot and
  • Franciszek Krok

Beilstein J. Nanotechnol. 2019, 10, 1596–1607, doi:10.3762/bjnano.10.155

Graphical Abstract
  • pressure (ELOP) method of perovskite decomposition was adapted (for more information see [12][26]). The SrTiO3(100) single crystal (10 × 3 × 0.5 mm3) sample was mounted on an n-doped Si(111) single crystal, which acted as an oxygen getter, allowing extremely low effective oxygen partial pressures to be
PDF
Album
Full Research Paper
Published 02 Aug 2019

Imaging the surface potential at the steps on the rutile TiO2(110) surface by Kelvin probe force microscopy

  • Masato Miyazaki,
  • Huan Fei Wen,
  • Quanzhen Zhang,
  • Yuuki Adachi,
  • Jan Brndiar,
  • Ivan Štich,
  • Yan Jun Li and
  • Yasuhiro Sugawara

Beilstein J. Nanotechnol. 2019, 10, 1228–1236, doi:10.3762/bjnano.10.122

Graphical Abstract
  • steps of well-ordered Si(111) semiconductor surfaces has been explained by the Smoluchowski effect [19]. Therefore, the change in CPD at steps of n-type TiO2 might be explained by the Smoluchowski effect. The Smoluchowski effect is well known for metals that have an orders of magnitude higher density of
PDF
Album
Supp Info
Full Research Paper
Published 13 Jun 2019

Electroluminescence and current–voltage measurements of single-(In,Ga)N/GaN-nanowire light-emitting diodes in a nanowire ensemble

  • David van Treeck,
  • Johannes Ledig,
  • Gregor Scholz,
  • Jonas Lähnemann,
  • Mattia Musolino,
  • Abbes Tahraoui,
  • Oliver Brandt,
  • Andreas Waag,
  • Henning Riechert and
  • Lutz Geelhaar

Beilstein J. Nanotechnol. 2019, 10, 1177–1187, doi:10.3762/bjnano.10.117

Graphical Abstract
  • epitaxy (MBE) on an n-doped Si(111) substrate. They consist of an intrinsic multiple quantum-well structure grown on a Si-doped n-GaN base of about 600 nm length. The active region is composed of four (In,Ga)N insertions with an In content of (20 ± 10)% and a thickness of 3 ± 1 nm. The insertions are
PDF
Album
Supp Info
Full Research Paper
Published 05 Jun 2019

Integration of LaMnO3+δ films on platinized silicon substrates for resistive switching applications by PI-MOCVD

  • Raquel Rodriguez-Lamas,
  • Dolors Pla,
  • Odette Chaix-Pluchery,
  • Benjamin Meunier,
  • Fabrice Wilhelm,
  • Andrei Rogalev,
  • Laetitia Rapenne,
  • Xavier Mescot,
  • Quentin Rafhay,
  • Hervé Roussel,
  • Michel Boudard,
  • Carmen Jiménez and
  • Mónica Burriel

Beilstein J. Nanotechnol. 2019, 10, 389–398, doi:10.3762/bjnano.10.38

Graphical Abstract
  • , maximizing the flux of carried precursor. The deposition temperature inside the main chamber (a hot-wall quartz reactor heated by an external furnace) ranged from 500 to 750 °C. The substrates used were 1 cm × 1 cm chips cut from a Pt (150 nm)/TiO2 (40 nm)/SiO2 (500 nm)/Si (111) wafer (VinKarola Instruments
PDF
Album
Supp Info
Full Research Paper
Published 07 Feb 2019

Interaction of Te and Se interlayers with Ag or Au nanofilms in sandwich structures

  • Arkadiusz Ciesielski,
  • Lukasz Skowronski,
  • Marek Trzcinski,
  • Ewa Górecka,
  • Wojciech Pacuski and
  • Tomasz Szoplik

Beilstein J. Nanotechnol. 2019, 10, 238–246, doi:10.3762/bjnano.10.22

Graphical Abstract
  • spectrum allowed us to determine that both Se and Te migrate into the metal structure much slower than Ge. Experimental The experimental details are similar to our previous works [12][28][36]. For most measurements, 2 in Si (111) substrates with a native SiO2 film were covered with an additional 100 nm
PDF
Album
Full Research Paper
Published 21 Jan 2019

Investigation of CVD graphene as-grown on Cu foil using simultaneous scanning tunneling/atomic force microscopy

  • Majid Fazeli Jadidi,
  • Umut Kamber,
  • Oğuzhan Gürlü and
  • H. Özgür Özer

Beilstein J. Nanotechnol. 2018, 9, 2953–2959, doi:10.3762/bjnano.9.274

Graphical Abstract
  • insight on relative contrast mechanisms in STM and AFM, on a graphene surface. In the past, we used this small-amplitude STM/AFM technique in order to investigate surfaces such as Si(100) [28], Cu(100) [29], Si(111) [30], and more recently Si(111) again, with an improved force resolution [31
  • amplitude. A similar behavior was observed in a previous work on Si(111) using the same small amplitude STM/AFM technique [37]. As mentioned before, the tip–sample distance (interaction regime) plays an important role in the relative contrast of different sites on the graphene surface. In order to shed
  • interactions with a larger range. When we compare the range of interactions in the tunnel current and force measurements, we see a different situation to that reported on other surfaces in previous studies. Based on previous works on semiconductors such as Si(111) and Si(100), the onset of tunnel current is
PDF
Album
Full Research Paper
Published 28 Nov 2018

Silicene, germanene and other group IV 2D materials

  • Patrick Vogt

Beilstein J. Nanotechnol. 2018, 9, 2665–2667, doi:10.3762/bjnano.9.248

Graphical Abstract
  • beam epitaxy (MBE) [1][2] and at around the same time on zirconium diboride thin films grown on Si(111) substrates by Si segregation through the film [3]. The synthesis of silicene further launched an intensive search for other 2D elemental materials synthesized under ultrahigh vacuum by MBE-like
PDF
Album
Editorial
Published 10 Oct 2018

Au–Si plasmonic platforms: synthesis, structure and FDTD simulations

  • Anna Gapska,
  • Marcin Łapiński,
  • Paweł Syty,
  • Wojciech Sadowski,
  • Józef E. Sienkiewicz and
  • Barbara Kościelska

Beilstein J. Nanotechnol. 2018, 9, 2599–2608, doi:10.3762/bjnano.9.241

Graphical Abstract
  • . Experimental Au nanostructures were prepared on Si(111) as a substrate. The substrates (1 × 1 cm2 of area) were cleaned with acetylacetone and then rinsed in ethanol. Thin Au films (with thicknesses in a range of 1.7–5.0 nm) were deposited using a table-top dc magnetron sputtering coater (EM SCD 500, Leica
  • place also in our samples. On the other hand, many defects are already created when a thin film of metal is deposited on the Si(111) surface, so heterogeneous dewetting must be also considered. During the formation of nanostructures from thin metallic films, it is necessary to take into account, in
  • related to software and hardware limitations and may be overcome in a future work. Conclusion Plasmonic platforms based on Au nanostructures have been successfully synthesized from metallic Au thin films deposited on a Si(111) substrate. Two processes should be considered in explaining the formation of
PDF
Album
Full Research Paper
Published 28 Sep 2018

Friction force microscopy of tribochemistry and interfacial ageing for the SiOx/Si/Au system

  • Christiane Petzold,
  • Marcus Koch and
  • Roland Bennewitz

Beilstein J. Nanotechnol. 2018, 9, 1647–1658, doi:10.3762/bjnano.9.157

Graphical Abstract
  • elevation of about 10 pm in height (Figure 5a,b). This elevation is less than the diameter of Si (111 pm) and Au atoms (144 pm). We thus exclude material transfer and rather assume structural changes at the atomic scale. We did not observe any shape changes at the tip apex by SEM analysis after a total
  • crucially on the presence of atoms that could re-passivate the interface. The effects of passivation have been shown in pioneering study on UHV AFM by Howald et al., who achieved stable sliding on reactive Si(111) after covering the tip by PTFE [23]. For our tips, sliding contacts with clean Si(100) stayed
PDF
Album
Full Research Paper
Published 05 Jun 2018
Graphical Abstract
  • porphyrins and organosilanes. A protocol was developed with particle lithography using steps of immersion in organosilane solutions to selectively passivate the surface of Si(111) with octadecyltrichlorosilane (OTS). A methyl-terminated matrix was chosen to direct the growth of CMPS nanostructures to fill
  • the uncovered sites of Si(111) to enable spatial confinement of the surface reaction. Silica spheres with a diameter of 500 nm were used as a surface mask to prepare nanoscopic holes within the OTS matrix film. Next, the samples were immersed in solutions of CMPS dissolved in toluene or bicyclohexane
  • OTS on Si(111) Particle lithography with an immersion step was used to prepare nanoholes within a film of OTS. A topographic view of the nanoholes is shown in Figure 2a, with the simultaneously acquired phase image (Figure 2b).The ex situ images were acquired with tapping-mode AFM in air. The
PDF
Album
Supp Info
Full Research Paper
Published 17 Apr 2018

Dopant-stimulated growth of GaN nanotube-like nanostructures on Si(111) by molecular beam epitaxy

  • Alexey D. Bolshakov,
  • Alexey M. Mozharov,
  • Georgiy A. Sapunov,
  • Igor V. Shtrom,
  • Nickolay V. Sibirev,
  • Vladimir V. Fedorov,
  • Evgeniy V. Ubyivovk,
  • Maria Tchernycheva,
  • George E. Cirlin and
  • Ivan S. Mukhin

Beilstein J. Nanotechnol. 2018, 9, 146–154, doi:10.3762/bjnano.9.17

Graphical Abstract
  • , Institut d’Electronique Fondamentale, UMR 8622 CNRS, University Paris Sud, University Paris-Saclay, 91405 Orsay cedex, France 10.3762/bjnano.9.17 Abstract In this paper we study growth of quasi-one-dimensional GaN nanowires (NWs) and nanotube (NT)-like nanostructures on Si(111) substrates covered with a
  • ]. The fabrication of a simple SC based on GaN NWs on Si(111) can be obtained via proper NW doping and formation of a p–n junction at Si substrate–GaN NW interface. Recently it has been theoretically demonstrated that optimization of the doping level and NW array morphology can lead to a power conversion
  • ) formation of a GaN shell over the NW template (e.g., ZnO) followed by the template NW removal [14]; 3) selective area molecular beam epitaxy (MBE) growth of GaN on sapphire (111) substrates over titanium mask [15]; and 4) MBE deposition of GaN on Si(111) substrates covered by a silicon oxide layer in the
PDF
Album
Full Research Paper
Published 15 Jan 2018
Other Beilstein-Institut Open Science Activities